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Abstract

Tensors are the backbone of multiple scientific applications. With their rise in
popularity, it is important to research high-performance routines for tensor compu-
tations. The Einstein summation convention (einsum) is a powerful way to express
what should be computed. By assigning a character to every dimension of possi-
bly multiple tensors, it can encode anything from matrix multiplications to tensor
network contractions or even more general tensor operations. To minder the compu-
tational needs, the contraction of an einsum expression can be performed in binary
fashion. During this process, intermediate tensors are stored to keep track of the re-
sults of binary contractions. In this thesis, I use LIBXSMM [13], a library targeting
small matrix multiplications, to build a library for calculating einsum expressions. I
describe a memory layout for intermediate tensors on which matrix multiplications
can be performed fast. To achieve this layout, I present an unpacking routine that
writes result elements of sub-matrices directly to the respective memory locations
in the result tensor of the binary contraction. Furthermore, I show results regarding
my implementation and compare them to the einsum implementation of PyTorch
[20].

Kurzfassung

Tensoren sind das Rückgrat zahlreicher wissenschaftlicher Anwendungen. Angesichts
ihrer zunehmenden Beliebtheit ist es wichtig, leistungsstarke Routinen für Tensor-
operationen zu erforschen. Die Einsteinsche Summenkonvention (Einsum) ist eine
Notation für Tensoroperationen. Durch die Zuweisung eines Buchstabens zu jeder
Dimension von möglicherweise mehreren Tensoren kann sie alles von Matrixmultipli-
kationen bis hin zu Tensornetzwerkkontraktionen oder noch allgemeineren Kontrak-
tionen zwischen Tensoren ausdrücken. Um den Rechenaufwand zu verringern, kann
die Kontraktion eines Einsum-Ausdrucks auf binäre Weise durchgeführt werden.
Während dieses Prozesses werden Zwischentensoren gespeichert, um die Ergebnis-
se der binären Kontraktionen zu sichern. In dieser Arbeit verwende ich LIBXSMM
[13], eine Bibliothek für kleine Matrixmultiplikationen, um eine Bibliothek zur Be-
rechnung von Einsum-Ausdrücken zu erstellen. Ich beschreibe ein Speicherlayout
für Zwischentensoren, mit dem Matrixmultiplikationen schnell und effektiv durch-
geführt werden können. Um dieses Layout zu erreichen, stelle ich eine Routine vor,
die Ergebnismatrizen direkt an die entsprechenden Speicheradressen im Ergebnis-
tensor der binären Kontraktion schreibt. Darüber hinaus zeige ich Ergebnisse zu
meiner Implementierung und vergleiche sie mit der Einsum-Implementierung von
PyTorch [20].
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1 Introduction

Tensors are an essential part of multiple scientific applications. Being the backbone
of research in chemistry, physics and quantum physics, math and machine learning,
their importance is clearly visible [8, 1, 6, 21]. Tensors are a multidimensional
arrangement of numbers, like vectors and matrices. They can be thought of as a way
to store information in multiple dimensions or as an extension to transformations,
like higher dimensional matrix multiplications [29]. Because of their popularity and
importance, research is not only going down the path of possible applications but also
high-performance computing. With a growing demand for using tensors, it is crucial
to perform calculations and operations with and on tensors fast and efficiently. For
example, Nvidia has built-in tensor cores in their recent graphics card A100 series
[2], supporting tensor operations on a hardware level. However, there is still a
need to write high-performance software routines that can use the given hardware,
GPUs and CPUs, to perform several tensor operations for tensors coming in all
shapes and sizes. Depending on their function, tensors often do not appear alone.
Multiple tensors can be arranged in a tensor network serving as a factorization of a
single tensor that can be calculated by contracting the network [11]. To minder the
computational load, the networks are usually contracted by contracting two tensors
at once until one tensor is left. A binary tensor contraction is essentially encoding
multiplications and additions enforced on respective dimensions of the two input
tensors.

The Einstein summation convention (einsum) has been established as a powerful way
to express operations on one or multiple tensors. An einsum expression is a string
referring to every dimension of every input tensor with a single character. With
this, it is possible to express numerous tensor operations. They can be calculated
in one step using multiple nested loops. But similar to tensor network contractions,
a computationally less expensive way of computing a given einsum expression is to
compute it in a sequence of binary contractions.

A popular method for calculating tensor contractions and einsum expressions is by
using matrix multiplications. One simple approach, known as TTGT, is imple-
mented by multiple tensor libraries like PyTorch [20]. TTGT is applicable for all
tensors but needs to perform several memory operations to be able to use matrix
multiplication to calculate binary contractions. Finding a way to minimize the mem-
ory overhead is crucial for runtime improvements and is part of active research [19,
26]. Binary contracting an einsum expression results in the appearance of interme-
diate tensors. These tensors don’t serve as input tensors for the einsum, nor do they
represent the final result tensor. They are simply used to store intermediate results.
Since they are not needed before and after the calculation of an einsum expression,
they can have any memory layout, as long as the contraction routine can process
it. In this thesis, I propose a memory layout for intermediate tensors that assists
high-performance contractions. I also show how these layouts can be achieved by
writing elements of the result tensor to the right memory address immediately after
they have been computed, saving memory access costs. As the backbone for matrix
multiplication, I use LIBXSMM [13], a library targeting small matrix multiplica-
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tions. Generated matrix multiplication kernels by LIBXSMM achieve almost peak
floating point performance on a supported CPU.

This thesis has the goal to be self-explanatory. To accomplish that, section 2 pro-
vides an introduction to tensor operations and network contractions, as well as the
einsum notation. The following section 3 explains approaches on how to calculate
tensor network contractions and einsum expressions using matrix multiplications.
Additionally, there is a short explanation of the functionality of LIBXSMM. Re-
lated work is presented in section 4. Section 5 describes the main contribution
of this thesis, a beneficial memory layout for intermediate tensors and a way to
immediately write result elements to their respective memory locations. Runtime
experiment results are presented in section 6, followed by a conclusion and possible
future research.

2 Tensors and tensor operations

This section provides an introduction to the necessary knowledge about tensors and
tensor operations to be able to understand key concepts appearing in this thesis. It
is important to say that none of these concepts are new. They have been explained
and used before in multiple research papers [19, 26] or websites [29].

Tensors can be thought of as a multidimensional arrangement of numbers or mul-
tidimensional arrays. The type of a tensor describes its number of dimensions. For
example, a scalar is a tensor of type 0, a vector is a tensor of type 1 and a matrix is
a type 2 tensor. A tensor of type 3 can be seen as a cuboid of numbers. Generally,
one scalar in a tensor of type t can be addressed with exactly t indices. Fig. 1a
shows a collection of said tensors with indices that address each element.

I will be denoting Tensors as Td0,d1,...,dn−1 ∈ Rs0×s1×...×sn−1 , where T is a tensor of type
n with dimensions d0, d1, . . . , dn−1 of sizes s0, s1, . . . , sn−1. Its set of dimensions is
denoted as DT = {d0, d1, . . . , dn−1}, also meaning that |DT | describes the type of T .
The size of a dimension d ∈ DT is written as |d|, so that ∀di ∈ DT : |di| = si holds.
Furthermore, |T | stands for the number of elements in the tensor. To reference
an element of T , I use the notation [T ](i0, i1, . . . , in−1) where the ordered indices
i0, i1, . . . , in−1 refer to respective dimensions d0, d1, . . . , dn−1, encoding the position
of the element. To be able to reference elements without a strict order of dimensions,
[T ]{d1 = i1, d0 = i0, . . . , dn−1 = in−1} is an equivalent notation. Additionally, if the
assignment of indices to dimensions is clearly given by the context of the expression,
the notation [T ]{i1, i0, . . . , in−1} is applicable. To be more comprehensive, I will
sometimes write about increasing a dimension by x when the correct phrase would
be to increase the index regarding a dimension by x. Sometimes, index names will
have the name of the dimensions, mixing the two. Table 1 provides an overview of
the above notations.

The vector, matrix, and tensor of type 3 in Fig. 1a could be denoted as Vx ∈ R5,
Mm,n ∈ R4×5 and Ta,b,c ∈ R3×4×5.
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Notation Description
Td0,d1,...,dn−1 ∈ Rs0×s1×...×sn−1 Tensor T of type n with dimensions d0, d1, . . . , dn−1

of sizes s0, s1, . . . , sn−1
|d| Size of the dimension d
DT Set of dimensions of tensor T
|DT | Type of tensor T
|T | Number of elements in tensor T
[T ](i0, i1, . . . , in−1) Element of tensor T at position (i0, i1, . . . in−1)
[T ]{d1 = i1, . . . , dn−1 = in−1} Element of tensor T identified with unordered

indices
[T ]{i1, i0, . . . , in−1} Element of tensor T identified with unordered

indices and clear dimension relation

Table 1: Tensor notations
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Figure 1: (a) Tensors of different types. (b) Memory layout of the red tensor with
strides for each dimension.
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2.1 Tensors in memory

To understand how upcoming tensor operations on tensors of arbitrary types and
dimension sizes can be calculated, it is important to understand how tensors are
represented in memory and what additional information is needed and saved.

Let’s first consider an ordinary matrixM. A matrix has two dimensions, m rows and
n columns. Every element of the matrix can be addressed with exactly two indices.
In a C-style program, one could do so by defining and allocating a two-dimensional
array mat[m][n]. An element ei,j of the matrix could then be referenced by using
a syntax similar to mat[i][j]. Note that depending on the allocation process, the
elements of the matrix do not have to be contiguous in memory, so going from the
last element of a row/column to the first element of the next row/column could
result in a memory jump larger than one. For now, assume that all |M| elements of
M are stored in one contiguous block of memory fitting exactly |M| elements. M is
considered to be in row-major format if the order of elements is similar to reading
the matrix from left to right. The order of dimensions would then be Mm,n, so
increasing the column index (dimension n) results in stepping one element forward
in memory. In contrast, M is in column-major format if the elements of the first
column are stored first, then the second column, and so on. The matrix is denoted
as Mn,m in column-major format.

As an example, the memory layout of the matrix A =

(
1 2 3
4 5 6

)
in row major for-

mat is Arow = (1, 2, 3, 4, 5, 6) and in column major format it is Acol = (1, 4, 2, 5, 3, 6).
Note that Arow and Acol can be seen as one-dimensional arrays/vectors, where each
of the matrix elements can be addressed by only one index.

2.1.1 Storing tensors as one-dimensional arrays

It is easy to observe that given tensors with arbitrary numbers of dimensions, allo-
cating memory, as well as writing tensor processing code that needs to reference the
respective elements using multiple []-operands is tedious and no longer an option.
However, similar to the Arow and Acol-vectors, a tensor of type t can always be seen
as a vector of scalars vecT , where a relation exists between the indices i0, i1, i2, ..., it−1
and the location of the respective element in the vector.

Again, let us consider the matrix Am,n ∈ R2×3 in row major format with Arow =
{1, 2, 3, 4, 5, 6}. Referencing the element [A](row, col) can also be achieved by refer-
encing [Arow](row · 3 + col). Increasing the row index by one results in a memory
jump of 3 in Arow, since A has three columns. Similarly, assuming An,m to be in
column major format with Acol = (1, 4, 2, 5, 3, 6), an element [A](col, row) can be
found at [Acol](col · 2 + row) since A has two rows. The index of an element in the
vector is called the offset of the element in a tensor. The factors multiplied with
the indices are called strides which describe the sizes of the memory jumps that
occur by increasing respective dimensions by one. The concept of strides can be
applied to any tensor of any type. A stride str(di) of a dimension di ∈ DT can then
be calculated by simply multiplying all the dimension sizes of later dimensions. The
last dimension d|D|−1 is called the fast dimension because its stride str(|DT | − 1)
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is simply 1.

As an example for strides, consider the tensor of type four Td0,d1,d2,d3 ∈ R2×5×3×4

being stored in a contiguous block of memory. Increasing d3 results in a memory
jump of 1, so str(d3) = 1. By increasing d2 by one, a whole dimension d3 is jumped
over, meaning that str(d2) = |d3| = 4. Incrementing d1 means jumping over two
dimensions: d2 and d3, resulting in a stride str(d1) = |d2||d3| = str(d2)|d2| = 12.
Similarly, str(d0) = |d1||d2||d3| = str(d1)|d1| = 60. The element [T ](1, 3, 2, 0) can
be found in memory with an offset of 1str(d0) + 3str(d1) + 2str(d2) + 0str(d3) =
60 + 36 + 8 + 0 = 104. Another example of strides is given in Fig. 1b, where strides
and memory jumps are shown for the red tensor.

Generally, strides can be calculated by

str(di) =
∏
k>i

|dk| (1)

and the offset of a single element with indices (i0, i1, . . . , in−1) is expressed by

offset =
k=n−1∑
k=0

iks(di). (2)

A tensor memory layout following equation (1) has unit stride.

With the above addressing of tensor elements using strides, one simply has to store
all the values of the tensor in an array along with the dimension sizes to be able
to address every single element. Furthermore, storing the strides helps with faster
offset calculation and is essential for tensor representations that have non-unit
stride (see permutation).

2.2 Operations on tensors

2.2.1 Permutation

A permutation on a tensor is a reordering of its dimensions, where any order can
be achieved. One simple example is the permutation of a matrix with σ = (1, 0)
resulting in the transposed matrix. Fig. 2a shows a tensor Td0,d1,d2 ∈ R3×2×4 being
permuted with σ = (1, 2, 0), resulting in the permuted blue tensor Pd0,d1,d2 ∈ R2×4×3.
The figure also shows the new strides and one can see that P , just like T , has unit
stride. The second blue tensor is the same as P while showing the new positions of
elements ei,j,k coming from T . With this in mind and by looking at Fig. 2c, one
can see that the memory layout of P has changed.

To avoid expensive memory operations, it is possible to simply change the strides
and dimension sizes of the dimensions that are permuted. The strides are no longer
in descending order, the tensor no longer has unit stride. However, the offset of
an element still can be calculated perfectly fine, meaning the values don’t have to
move in memory and permuting is cheap. Fig. 2 (b) shows this process, again for
Td0,d1,d2 ∈ R3×2×4 and σ = (1, 2, 0). The dimensions of the pink tensor are simply
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⇒
σ = (1, 2, 0)
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Figure 2: (a) Permutation of a tensor by changing its values in memory. (b) Permu-
tation of a tensor by changing its strides and dimension sizes. (c) Memory layouts
for each tensor.

reinterpreted to have different sizes and strides, resulting in no memory operations,
as seen in figure 2 (c) I call this type of permutation soft permutation.

2.2.2 Reshape

Reshaping means changing the view on a tensor. Its number of elements stays the
same, just like the order of its elements in memory. Only the number of dimensions
and their sizes possibly change by merging or splitting them. Multiple neighboring
dimensions of a tensor can be merged. This means that i adjacent dimensions
dx, dx+1, . . . , dx+i−1 with dimension sizes |dx|, |dx+1|, . . . , |dx+i−1| result in one bigger
dimension D with dimension size |D| =

∏x+i−1
k=x |dk|. Fig. 3 shows how a tensor

Td0,d1,d2 ∈ R3×2×4 is reshaped to the yellow tensor RD01,d2 ∈ R6×4. The other yellow
tensor at the bottom shows the initial position of its elements in T . It is also possible
to split one dimension into multiple neighboring dimensions. Splitting dimension
D01 of R into two dimensions of sizes |d0| = 3 and |d1| = 2 would result in the tensor
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Figure 3: Reshaping a tensor of type 3 to a matrix. The strides are denoted next
to the tensors. The bottom matrix shows the origin of the matrix elements.

before the initial merge.

Since reshaping does not touch any of the elements of the tensor in memory, only the
dimension sizes and strides have to be changed. This possibly changes if the tensor
has been soft-permuted before. The tensor has no unit stride anymore. This means
that some neighboring dimensions d0 and d1 don’t have neighboring strides anymore,
so str(d0) 6= str(d1) · |d1|. The values of the tensor now have to be permuted in
memory before the reshape operation. Otherwise, the resulting reshaped tensor
would not have “working” strides, meaning they cannot be expressed with a single
natural number. Fig. 4 shows the tensor P from Fig. 2b that has been soft-
permuted. If dimensions d1 and d2 are now merged to D12 in R, R will have no
valid stride for D12. The merged dimension is first increased with stride 8 two times.
After that, the original dimension d2 has reached its virtual maximum value of 3,
and has to be set to zero in the next increment step. This results in a partial stride
of −2 · 8. Simultaneously, d1 is increased by one with a stride of 4, resulting in a
total memory jump of −12. Since both memory jump sizes 8 and −12 have occurred
by increasing the same dimension D12, no valid stride exists for D12 and P has to
be permuted in memory before the reshape operation to achieve unit stride.

2.2.3 Summing dimensions

A dimension of a tensor can be summed and thus reducing the number of dimensions
and elements of the tensor. Multiple dimensions can be summed at once. Summing
all dimensions results in a scalar value that is equal to the sum of all elements in
a tensor. Let’s consider a tensor Td0,d1,...,dn+s−1 with n + s dimensions where s of
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Figure 5: Summing dimension of a tensor. The blue tensor is the result of summing
the blue dimension. The yellow tensor is the result of summing the yellow dimension.

them should be summed. The resulting tensor can be denoted as Sd0,d1,...,dn−1 =
Td0,...,a+0 ,...a+1 ,...,a+s−1,dn−1

, where a+0 , a
+
1 , . . . , a

+
s−1 are the summed dimensions. A single

element of S can be calculated using the equation

[S](d0, d1, . . . , dn−1) =
∑

a0,a1,...,as−1

[T ](d0, . . . , a0, . . . a1, . . . , as−1, dn−1). (3)

Fig. 5 shows a tensor T of type 3 and two different tensors of type 2, where a
dimension of T has been summed. The blue tensor B is the result of summing
the blue dimension, and the yellow tensor Y of summing the yellow dimension. An
element of B is calculated by summing the respective elements of each matrix slice.
Y keeps the slices but sums the columns.

2.2.4 Tensor contraction

A tensor contraction is an operation on two tensors resulting in one contracted ten-
sor. I will be calling the two tensors that are contracted input tensors and the
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contracted tensor output tensor or result tensor. The contraction can be seen
as a product between elements of the two tensors while simultaneously summing
dimensions that do not appear in the result. The dimensions that are summed
are the so-called contraction dimensions and they appear in both input ten-
sors. To contract two tensors A and B, one first has to identify the dimensions
that should be contracted over. The resulting tensor (output tensor) R holds all
the dimensions of the two input tensors that are not contracted over, meaning
it has anything between one and |DA| + |DB| dimensions. If the R has exactly
|DA| + |DB| dimensions, meaning there are no contraction dimensions, then R is
called an outer product tensor of A and B. Let’s denote c0, c1, . . . as the dimen-
sions that are contracted and a0, a1, . . ., b0, b1, . . . as the dimensions that are not
contracted, appearing in A and B, respectively. R will then hold the dimensions
a0, a1, . . . , b0, b1, . . .. An element [R](a0, a1, . . . , b0, b1, . . .) is calculated by summing
the products of all two-element combinations, dependent on c0, c1, . . ., where the two
elements are [A]{a0, a1, . . . , c0, c1, . . .} and [B]{b0, b1, . . . , c0, c1, . . .}. The contraction
can be described with the equation

[R](a0, a1, . . . , b0, b1, . . .) =
∑

c0,c1,...

[A]{a0, a1, . . . , c0, c1, . . .} · [B]{b0, b1, . . . , c0, c1, . . .}

(4)
Note that the contraction dimensions have to have the same size in each of the
tensors.

One popular tensor contraction is matrix multiplication, where the contraction di-
mension is the column dimension of the left matrix and the row dimension of the
right matrix. The result is again a matrix, keeping the row dimension of the left
and the column dimension of the right matrix. Fig. 6 shows a contraction of two
tensors of type 3, Am,k1,k2 and Bk2,k1,n. The contraction dimensions are k1 and k2,
so that the result tensor Cn,m is a matrix with dimensions n and m. The highlighted
elements of A and B are the elements involved in the calculation of [C](3, 0), as seen
in the equation at the bottom of the figure.

2.2.5 Tensor network contraction

A tensor network is a network of multiple tensors with a given way to contract this
network down to one single tensor. It can be seen as a factorized approximation
of a tensor. An example of a tensor network consisting of four tensors is given in
Fig. 7 (left). In this graph-like presentation, the nodes are the tensors and the
edges are the dimensions of the tensors. Respective dimension sizes are written onto
them (a - f). A dimension (edge) connecting two tensors is a contraction dimension
between the two, while “free” edges will be kept in the result tensor. If there are f
free edges, the result tensor is of type f .

The contraction can be calculated similarly to Eq. (4) by calculating the sum over
products between every index combination of contraction dimensions. Let Di denote
the set of dimensions kept in the result tensor coming from tensor T i and let Ci be
the set of dimensions that T i has as a contraction dimension with another tensor.
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Figure 6: Tensor contraction of two type 3 tensors with two contraction dimensions
k1 and k2, resulting in a matrix with dimensions n and m. The highlighted elements
are involved in calculating the highlighted element of the matrix, as shown in the
equation.

Then the network contraction can be calculated with

[R]{D0, . . . , Dn} =
∑

{C0,...,Cn}

[T 0]{D0, C0} · [T 1]{D1, C1} · . . . · [T n]{Dn, Cn} (5)

where {Di, Ci} is a set of sets but should be seen as a simple set of indices that are
in Di ∪ Ci.

This way of calculating a tensor network contraction is computationally expensive.
A cheaper way of contracting would be to contract two tensors at a time until only
one output tensor is left. This approach is shown in Fig. 7, where the red and
blue tensors are contracted first, then the red/blue tensor with the yellow one, and
last but not least the red/blue/yellow tensor with the green tensor, resulting in one
matrix. While a contraction strictly following Eq. (5) would need O(a · b · c ·d · e · f)
multiplications, contracting the network in binary fashion in the way shown only
needs O(acdf + adef + abef) operations. Binary contracting a network exploits
that dimensions are summed in the process and no longer appear in future binary
contractions. Finding an optimal contraction sequence is NP-hard and not in the
scope of this thesis, but is still part of active research, alongside finding not the
optimal, but a good sequence by using heuristics [17, 28, 22].

2.2.6 Einsum summation convention

The einsum summation convention (einsum) is a powerful way to express operations
on (multiple) tensors. A simple einsum is the term abcd, cdefg -> abefg. The
two parts of the einsum are divided by the “->” sign. On the left are sub-strings
divided by commas that refer to each input tensor. The right side consists of a single
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Figure 7: A tensor network in graph notation being contracted with three binary
contractions. The nodes represent tensors and the edges are dimensions of size a -
e. The resulting tensor is a matrix.

string that represents the output tensor. Each of the sub-strings consists of multiple
characters referring to a single dimension of the respective tensor. Changing the
arrangement of letters in the output expression means permuting the output tensor.
The example einsum represents a binary tensor contraction. The two input tensors
both have the contraction dimensions c and d which do not appear in the result
tensor. The other dimensions appearing in the left and right input tensor are kept
in the output tensor.

Calculating a given einsum is similar to calculating a tensor network contraction. As
an example, the einsum expression abac, ca, def, eg -> gaf with input tensors
Aa0,a1,a2,a3 , Bb0,b1 , Cc0,c1,c2 , Dd0,d1 and result tensor R is calculated by

[R](g, a, f) =
∑
b,c,d,e

[A](a, b, a, c) · [B](c, a) · [C](d, e, f) · [D](eg). (6)

There are a few rules an einsum expression has to follow:

1. Dimensions represented by the same character must have the same size.

2. The number of characters in the string regarding tensor T must be |DT |.

3. Characters appearing in the output tensor string must appear in at least one
of the input strings.

4. Characters in the output tensor string can only appear once.

To get a better understanding of the notation, Table 2 shows some example einsums
and the operation that they encode.

Like with the contraction of a tensor network, an einsum can be contracted in
binary fashion with a given contraction sequence to reduce the number of needed
calculations. Each binary tensor contraction results in a tensor containing all the
dimensions that are not contraction dimensions. The dimensions appearing in the
result tensor of a binary contraction inside an einsum are determined in a more
general way. Here, a dimension is kept if it appears in the final result tensor or in a
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Einsum Description
mk, kn ->mn matrix multiplication row major
km, nk ->nm matrix multiplication column major
mn ->nm matrix transpose
bkm, bnk ->bnm batched matrix multiplication
ij, ij ->ij matrix element-wise multiplication
tt -> trace of matrix
i, j ->ij vector outer product
i, j -> vector inner product
abcdef ->befdca tensor transpose
abcd, cdefg ->abefg binary tensor contraction
abcd, cdefg, fghij, abexyz ->hijxyz tensor network contraction
abcdef ->abc summing dimensions d, e, f

Table 2: Different einsum strings with descriptions. Partially taken from [27].

tensor that is still to be contracted, meaning that dimension is “still needed”. The
tensor contractions follow the same approach, a non-contraction dimension is either
contracted over in a later stage or appears in the output tensor of the network.

Moreover, restrictions of binary tensor contractions in comparison to contractions
of einsums are:

1. There is no dimension identifier appearing in both of the input tensors and
the output tensor.

2. There is no dimension identifier appearing multiple times in one tensor.

3. The output tensor consists of all the dimensions that appear only in one of
the two input tensors.

4. The order of identifiers in the output tensor is given by the order in which
they appear in the two input tensors.

3 Calculating binary einsum contractions

This section gives an introduction to popular approaches to compute binary ten-
sor contractions. The aforementioned restrictions of binary tensor contraction in
comparison to their einsum counterpart are then lifted. Therefore, binary einsum
contractions and with this a complete einsum expression can be calculated.

One could simply follow equation (4) to correctly compute a binary tensor con-
traction. While the algorithm seems quite simple, the attained performance of this
approach is not very high. High-performance implementations of critical build-
ing blocks for popular algorithms are using hand-crafted assembly kernels. Matrix
multiplication is one of these building blocks, being used in a wide variety of ap-
plications. Given the similarity between matrices and tensors, a way to improve
the implementation of tensor contractions is by using matrix multiplications. There
exist multiple approaches to achieve this. I will be presenting two of them in this
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section that have been used in research before as a baseline [19, 26]. First, I will
give a short introduction to LIBXSMM, the matrix multiplication backbone of my
implementation.

3.1 LIBXSMM

LIBXSMM [13] is a library targeting small matrix multiplications. It serves as a
just-in-time code generator by compiling matrix multiplication kernels. The kernel
is architecture-specific, harnessing the power of supported vector operations pro-
vided by the hardware. Just-in-time (JIT) compilation means generating machine
code during runtime. The subroutine generating the code returns a pointer to the
matrix multiplication program that the main program can then jump to. While this
procedure generates an overhead because of the compilation process, the kernel can
be reused multiple times. Given the potential performance increase of the matrix
multiplication, this overhead is getting less important with every reuse.

The LIBXSMM function generating the general matrix multiplication (GEMM) ker-
nel needs to be provided with m, n, and k parameters that encode the shapes of
the matrices. m is equal to the number of rows of the first matrix, n is equal to the
number of columns of the second matrix and k encodes the number of columns/rows
in the first/second matrix. Both matrices can be optionally transposed. Further-
more, both matrices have to have one dimension of stride 1, the other dimension can
have any stride. The stride of one dimension of the output tensor can also be chosen
freely. Since a LIBXSMM GEMM kernel needs a stride one dimension to operate,
it is possible that elements that should be part of a GEMM need to be packed first.
In this thesis, I will refer to packing as a process that copies values of a tensor into
contiguous memory. Unpacking, on the other hand, means writing elements of a
matrix to respective memory locations in a result tensor. Packing and unpacking
are used in high-performance matrix multiplication implementations [30, 14, 10].
A generated kernel consists of multiple SIMD (single instruction multiple data) op-
erations being performed on matrix elements. At the beginning and the end, stack
operations are performed to follow calling conventions. These operations may intro-
duce an additional overhead, especially if the shapes of the matrices are small.

3.2 Calculating contractions with matrix multiplications

3.2.1 The TTGT approach

One approach to calculating a tensor contraction by using matrix multiplications is
the transpose-transpose-GEMM-transpose (TTGT) approach. To contract tensors
using TTGT, one has to permute them in a way so that they can be reshaped to a
matrix. Let’s again look at the einsum expression for column-major matrix multi-
plication: km, nk -> nm encodes the contraction dimension k and the dimensions
kept in the resulting matrix m and n. Two tensors Am0,k0,m1,k1,m2 and Bk1,n0,k0,n1

shall now be contracted by using the TTGT approach. The contraction dimensions
are denoted as ki while the non-contraction dimensions in the left tensor are named
mi and in the right tensor ni. A scheme applicable to these types of tensor con-
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Figure 8: The TTGT approach with permutation(⇒), reshaping ( ) and matrix
multiplication steps (>>>).
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Figure 9: Memory layouts of the matrices APRK,M and BPRN,K .

tractions is to first permute the tensors in memory, so soft permuting them is not
sufficient (reshape after permute, see Fig. 4). In our example, the permuted tensors
would have dimension order APk0,k1,m0,m1,m2 and BPn0,n1,k0,k1 . The connection to a
matrix multiplication can now be seen by reshaping the two tensors to APRK,M and
BPRN,K . Calculating the output matrix CMN,M and reshaping it to Cn0,n1,m0,m1,m2

by splitting up the dimensions N and M will result in the correct result tensor of
the tensor contraction. The pipeline of the TTGT approach is shown in Fig. 8 and
the new matrix-like memory layout for both A and B in Fig. 9.

One upside of TTGT is the attained floating point operations per second (FLOPS)
during the matrix multiplication. In contrast to LAGEMM described below, the
resulting matrices of TTGT are large and the GEMM subroutine can be applied
without any dimension search problems with decently high FLOPS. The big down-
side of this approach is the permutation step which needs to be performed in memory.
Essentially, both input tensors have to be copied which results in a large memory
overhead most of the time, especially for smaller tensor contractions. Since the
amount of needed memory operations equals |M | · |K|+ |N | · |K| and the amount of
needed floating point operations is 2 · |M | · |K| · |N |, very large tensor contractions
will not be affected as much by the copy operations. For every other tensor, finding
a way to minimize the needed permutations is crucial to increase the performance
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contraction 1 contraction 2 contraction 3

Figure 10: Permutation operations (→) and matrix multiplications (>>>) needed for
contracting the tensor network in Figure 7 using TTGT.

of tensor (network) contractions. D.A. Mathews [19] has done some key research in
this regard. Fig. 10 shows all the needed permutations (→) and matrix multipli-
cations (>>>) for contracting the tensor network from Fig. 7 using a naive TTGT
implementation. One can see that, again, the input tensors of the contraction need
to be permuted. The resulting tensor itself is possibly an input tensor at a later
stage of contracting the network and needs to be permuted too.

3.2.2 Looping around matrix multiplications (LAGEMM)

Another approach to calculating a tensor contraction by using matrix multiplications
is to identify dimensions in the two input tensors that can represent a GEMM and use
the other dimensions to loop around it. To give a better perspective, let’s look at the
two tensors Aa,b,c,d and Bf,b,g,c that are contracted to Ca,d,f,g. The Einstein notation
for this contraction is abcd, fbgc -> adfg. A column major matrix multiplication
can be achieved by using the dimensions d, c, g, and use a, b, f to loop around the
GEMM represented by cd, gc -> gd. Note that all of these matrices are contiguous
in memory which is not always the case. The indices regarding dimensions a, b, f
provide an offset in A and B on where to find respective matrices. The offsets are
calculated by simply using indices and strides as described in Eq. (2). In the end,
there will be |a| · |b| · |f | matrix multiplications, and the elements are written to
their right location in C during the unpacking routine. However, in this example
A and B have a good order of dimensions so that matrix multiplication can easily
be applied. Depending on if the matrix multiplication subroutine (kernel) allows
for transposing matrices or matrices with dimensions with arbitrary strides, this
approach will work in more or less cases without permuting the tensors first. For
example, if dimensions f and g were to switch positions in B, the einsum would be
abcd, gbfc -> adfg. The matrix multiplication cd, gc -> gd could then still be
achieved by simply telling the subroutine the stride of g in B. Given the einsum
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abcd, fbcg -> adfg where the positions of g and c are switched, the column-major
matrix multiplication can still be performed by transposing the second matrix. If
the subroutine always needs a dimension of stride 1, then the einsum xabcd, ycdab

-> xy cannot be computed using this approach without permuting the tensors first.
Here, the contraction dimensions are a, b, c, d. There is no way of having only one
and the same contraction dimension present in the matrix multiplication.

The upsides of the approach are that tensors do not have to be permuted in all
cases (or never if the kernel supports arbitrary strides and transposition). However,
finding dimensions of a good size that the GEMM can be performed on is not
always a given. If the dimensions chosen are very small, the overhead of calling
the kernel may be larger than the computation time needed. Some kernels only
operate on larger matrices, so small ones have to be padded with zeros, wasting
computation capabilities. Also, kernels are (way) slower operating on matrices with
bigger or arbitrary strides than those that are given matrices contiguous in memory,
further limiting the choice of dimensions or even the possibility to use LAGEMM.
Furthermore, looping around the GEMM in a cache-friendly way is not as easy as
with the TTGT approach. It is favorable to have looping dimensions with small
strides so that memory pages containing elements of multiple matrices are already
in the cache. However, contraction dimensions are present in both tensors with
possibly different strides. If they are not part of the GEMM and are used to loop
around it, it is not possible to guarantee a good memory access pattern in both
tensors. As an example, consider the tensors Am0,m1,k0,k1,m2 and Bk0,n0,n1,n2,k1 that
can be contracted using LAGEMM with the GEMM represented by k1m2, n2k1 ->

n2m2. Looping with k0 results in a small stride in A but a large stride in B.

3.2.3 Einsum via matrix multiplication

Given that tensor contractions are possible to calculate using GEMMs, by lifting the
constraints 1. - 4. described in Sec. 2.2.6, it is also possible to calculate any einsum
expression consisting of more than one input tensor with matrix multiplications.

1. There can be dimension identifiers appearing in both input tensors and the
output tensor: These dimensions are called batch dimensions and can be in-
terpreted as a loop around the complete GEMM.

2. Dimension appearing multiple times in one input tensor: A dimension identi-
fier appearing multiple times in one tensor increases the stride of this dimen-
sion in the tensor. This also means that some of its elements are disregarded.
Elements can be accessed by using the larger stride or a copy of the tensor
can be made, where the identifier only appears once and where all elements
are used in the contraction.

3. The output tensor can hold more or fewer dimension identifiers than those
only appearing in one of the two input tensors: If the output tensor consists
of more dimensions, then those dimensions are batch dimensions (see 1.). If it
has fewer dimensions, then the respective dimensions of the input tensors can
be summed before contraction.
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4. There is no fixed arrangement of dimensions in the output tensor: The output
tensor can be permuted and thus achieve any ordering of its dimensions.

4 Related work

There has been a vast amount of research in the last decade on the implementation
of tensor operations. Whether it being about the use of tensors in specific domains
[6, 21, 9], building on top of the TTGT or LAGEMM routines [19, 26], or general
tensor libraries being able to target arbitrary tensor layouts during runtime. Popular
choices for the latter with Python interfaces are NumPy [12], TensorFlow [18] and
PyTorch [20] which also provides a C++ interface. There are libraries for finding
the optimal combination of different approaches [26] or focussing on ease of usability
by providing interfaces on tensor diagrams [7]. opt einsum [25] provides a Python
interface to find a good or even optimal contraction sequence for a given einsum
expression.

High-performance matrix multiplication is the backbone of tensor calculations and
has been researched over multiple decades and implemented in a variety of libraries
targeting basic linear algebra operations. To name a few, the basic linear algebra
subroutines (BLAS) [16, 5, 4] have been around since the 1970s. Intel built their
own routines named Intel MKL [15]. BLIS [30] is a newer library improving BLAS
and giving it more flexibility. Here, two (large) matrices are recursively blocked
by packing sub-matrices for the various cache levels. The packing for different
cache levels was shown to be not affecting the performance too much [10]. The
computation happens by essentially looping around an optimized assembly kernel
for a given architecture. This implementation achieves almost peak floating point
performance on a given CPU.

Matthews showed a way to contract two tensors without permuting them first, while
still using high-performance matrix multiplication kernels [19]. In his research, he
interprets the two tensors as matrices that are later multiplied. Because there are
no permutation operations first, the matrices are not contiguous in memory. They
are in a “scatter-matrix-layout” which means that the memory strides for going one
element further to the next row/column differ. Matthews gives multiple options on
how to handle this layout. The first option is to pack (copy) the currently needed
elements of the matrix in the scatter layout into contiguous memory. However,
this is not always needed, since some parts of the scatter matrix still have strides
that a GEMM using a BLIS kernel [30] can be performed on. By exploiting this
and the fact that permutations are not needed, this approach results in almost the
same performance as standard matrix multiplications where the matrices are of the
same size as the tensors. This means that the matrix multiplication they compare
themselves to is essentially the calculation step of the TTGT approach, where the
permutation has been performed already.

Springer and Bientinesi [26] had the same goal as Matthews; contracting two ten-
sors without any costly permutation operations. Their approach is to find the best
contraction candidate between TTGT, LAGEMM (or loop over GEMM in their
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case), or their newly introduced GETT approach. GETT stands for “GEMM-like
tensor-tensor multiplication”. Essentially, it searches potential dimension reshape
operations to then perform a GEMM on a sub-tensor. The reshapes consider the
size of the result dimensions and the various cache-level sizes of the machine. The
sub-tensors are chosen so that they fit into the cache levels, similar to blocking the
matrices in the BLIS matrix multiplication routine.
Multiple GETT candidates are then timed, and the best one is chosen to be com-
pared to TTGT and LAGEMM candidates. It was also shown that there is no need
to time more than 16 GETT candidates since timing more does not result in further
noticeable performance benefits. However, the presented work is only comparable to
the work from Matthews in the sense that it contracts tensors in a high-performance
fashion. Former tries to find a way to generate contraction code by first simulating
multiple contraction approaches. The latter uses its presented approach at all times
without any searching process.

I will be comparing my work to the einsum implementation of PyTorch [20] in
section 6 of this thesis. PyTorch implements the vanilla TTGT approach for einsum
expressions. It permutes tensors that should be contracted to two matrices and
uses a batch matrix multiplication subroutine to do the calculation. The order of
dimensions in the binary result tensor is then given by the order of dimensions in
the input tensors. If the result tensor needs to be contracted itself, it has to be
permuted too. There is no use of the knowledge about future contractions the result
tensor has to undergo and its potential memory layout.

My work differs from the three examples described above. I do not only consider
binary tensor contractions but look at the complete contraction sequence. By doing
this, I try to exploit knowledge about future contractions tensors have to undergo.
There has been research and implementations regarding tensor networks and their
contraction routines [24], but to my knowledge no research about considering con-
tractions of tensor networks or einsum expressions by having future contractions in
mind.

5 Memory layouts for intermediate tensors

This section describes a way to analyze an einsum expression and its sequence of
binary contractions to be able to optimize the LAGEMM approach. By identifying
input, output and intermediate tensors, one can find a memory layout for interme-
diate tensors that assists a fast contraction routine. To achieve this, good memory
layouts and an unpacking process that writes the calculated parts of the kernel
output to the right locations in memory are needed.

5.1 Intermediate tensors

Intermediate tensors are tensors that result from a binary contraction in the con-
traction sequence of an einsum expression and are contracted themselves at a later
stage. This means that they are neither input tensors provided up front, nor the
result tensor at the end of the contraction sequence, since the last result tensor is
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not contracted again. The result tensor of the einsum has to have a specific order
of dimensions. The input tensors are provided with a specific memory layout too.
Intermediate tensors, however, are used to save intermediate results and are gener-
ally of no importance after the contraction sequence has been processed. Because
of this, they can have any memory layout, as long as the contraction routine can
process it. A more sophisticated unpacking routine can write result matrices of the
GEMM kernel back to any memory location and thus providing the desired memory
layout for the intermediate tensors.

Reducing memory operations By immediately writing to any memory location
during the unpacking process, one essentially gets a “free” permutation operation
for any intermediate tensor. Let’s assume an intermediate tensor I is at some point
a result tensor of a binary contraction of the tensors A and B. Since this is done
with the help of GEMMs, A and B are represented as matrices. During this, A and
B are blocked and sub-blocks of I are calculated which have to be written to the
right position in memory. These memory operations can be assumed to operate on
main memory if |I| is large enough. The total number of memory operations is then
|I|. I is possibly contracted itself at a later stage. Assuming one wants to permute
I again before contracting it to achieve a new memory layout, it will take another
|I| memory operations. In total, 2|I| memory operations are performed because
of the intermediate tensor I. By knowing about the future memory layout that I
should be in, it is possible to merge both sets of memory operations into one, which
is performed during the unpacking process. The total amount of memory operations
would then only be |I|. An idea that is not further investigated in this thesis of
how to utilize this for the TTGT approach is shown in Fig. 11. Here, the same
contraction is performed as in Fig. 10. However, the intermediate tensors created
from contractions 1 and 2 are not stored in a memory layout that the standard
TTGT approach would normally have. Instead, the intermediate tensors RB and
RBY are stored to be in the correct matrix layout that they need to be in for their
own contraction step.

5.2 Intermediate tensors during LAGEMM

With the described possibility to achieve any memory layout for intermediate tensors
by gaining a free memory permutation, most of the drawbacks of the LAGEMM
approach can be eliminated. To do so, one can find a beneficial memory layout so
that

1. a matrix multiplication using LIBXSMM is possible.

2. the GEMM is calculated on matrices that are contiguous in memory, guaran-
teeing good memory access patterns.

3. dimensions not part of the GEMM can be positioned so that looping around
the GEMM is done in a cache-friendlier way.

4. the matrices part of the GEMM can have any size, meaning the kernel can
have any shape. This ensures that the kernel performs well.
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Figure 11: Contraction of a tensor network using TTGT while intermediate tensors
are in a correct memory layout for their contraction.

Finding a memory layout supporting characteristics 1. - 4. will improve the stability
of the LAGEMM approach, since performance is no longer dependent on possibly
poor memory access patterns or tensor layouts.

Identifying different dimension types To find a beneficial memory layout for
two intermediate tensors I and J , one has to know the dimensions that are part
of the contraction the tensors have to undergo. This includes dimensions of the
result tensor C and both input tensors I and J . This is because different types
of dimensions have to be identified to then be able to specify the memory layout
attaining characteristics 1. - 4. For a binary contraction between tensors I and J
resulting in tensor C, the possible types of dimensions are:

(a) Dimensions appearing in I and J , but not in C (K dimensions).

(b) Dimensions appearing in I and C, but not in J (M dimensions).

(c) Dimensions appearing in J and C, but not in I (N dimensions).

(d) Dimensions appearing in I, J and C (B or batch dimensions).

(e) Dimensions appearing only in I.

(f) Dimensions appearing only in J .

Note that dimensions appearing only in C are not possible under the constraints
of a valid einsum expression. For a tensor contraction, only options (a) - (c) will
appear. Options (e) and (f) are of no concern because those dimensions can be
summed. They are not in the result tensor C, so they are not important for future
contractions or the final output tensor. They are not contracted over, so they would
only increase the computational load by a factor of their size. Dimensions that can
be summed will never appear in an intermediate tensor because they would have
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{a,b,c,d,e} {a,b,d,f} {b,c,g,h,j} {c,i,j}

{g,h,i,k}{b,c,g,h,i}

{b,c,e,f} {b,c,i,k}

{b,e,f,i,k}

M
KB
N

Figure 12: Sets of dimensions for a given contraction sequence. Sets of intermediate
tensors have boxes around them. The sets hold respective batch dimensions (blue),
contraction dimensions (black), M dimensions (red) and N dimensions (green).

been already summed in one of the input tensors of the einsum. |K|, |M |, |N |, |B|
denote the products of dimension sizes for dimensions that are part of K,M,N,B.
So if there are three K dimensions k0, k1 and k2, then |K| = |k0||k1||k2|.
Fig. 12 shows how dimensions are categorized in a contraction of an einsum expres-
sion. The sets of dimension identifiers for respective tensors are colored to distin-
guish between the different types of dimensions. Blue is a batch dimension, black is
a contraction dimension (K), red is an M dimension and green is an N dimension.
M dimensions only appear in the left input sets and green ones only appear in the
right ones. Note that a dimension of some type in one of the input tensors is not
necessarily of the same type in the output tensor C of the binary contraction. The
category of a dimension d ∈ DC is chosen w.r.t. the contraction where C serves as
an input tensor.

It is possible to color the complete contraction graph at the start. Given a con-
traction sequence, the sets of dimensions for all the tensors (including intermediate
tensors) are known. This can be done by going through the contraction sequence
and looking at future contractions. If a dimension in one of the input tensors for
a binary contraction is still needed in a later binary contraction, it will be in the
respective binary output tensor. It is clear which tensors are contracted together.
With index sets for both input tensors and the output tensor, the types of dimen-
sions can be set. Note that the types are unambiguous because every tensor is only
contracted once.
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5.2.1 Finding a memory layout

With the types of dimensions for a binary contraction, it is now possible to describe
a tensor layout for intermediate tensors that will be contracted using LAGEMM. For
now, assume that both input tensors of a binary contraction I and J are intermedi-
ate tensors and their memory layout can be chosen freely. With the categorization
of dimensions in DI and DJ , it is now possible to further specify a layout that has
the characteristics 1. - 4. described above.

Characteristics 1. and 2. are easy to achieve by identifying dimensions in I and
J that a matrix multiplication can be performed on. It is sufficient to identify one
M dimension m, one N dimension n and one K dimension k, and arrange them
accordingly for a column-major GEMM. The last two dimensions with the smallest
strides in I...,k,m should be k and m, or n and k in J...,n,k. If there are no M and/or
N dimensions, a GEMM is still possible by interpreting one/both of the matrices as
a vector. The same applies if there are no K dimensions. Then, an outer product
can be calculated between two vectors.

Characteristic 3. demands thinking about in what order dimensions that are not
part of the GEMM are used to loop around the GEMM. As an example, consider the
two index sets DI = {b0,m0,m1,m2, k0, k1, k2} and DJ = {b0, n0, n1, n2, k0, k1, k2},
where b0 is a batch dimension and mi, ni, ki are M, N and K dimensions, respectively.
The GEMM’s dimensions can be chosen to bem0, n0, k0, leaving b0,m1,m2, n1, n2, k1,
k2 for looping around the GEMM. Note that this selection is not the only option
since there are multiple M , N and K dimensions. The question is which dimension
index should be increased for looping first, which one afterward, and so on. To find a
loop order heuristic, consider that all K dimensions are not part of the result tensor
C. Changing their indices will not change the memory position that elements of
the result matrices are written to. By increasing the K dimensions first, respective
elements of C can be kept in registers. They need to be written to memory once after
the K-loops are finished. Choosing the loop order to start with the K dimensions
means that those dimensions should have the smallest possible strides in both I
and J . This ensures good memory access because input matrices along the K
dimension are stored one after another. The known memory layouts can be expanded
to I...,k1,k2,k0,m0 and J...,k1,k2,n0,k0 . While k1 and k2 must have the same order in I and
J , there is still a degree of freedom by choosing the order of k1 and k2. The batch
and M/N dimensions are still left to be positioned in I and J . A batch dimension
is present in all the three tensors I, J and C. Increasing its index results in memory
jumps in all of them. Batch dimensions should be looped over last, which means
that the final memory layouts are Ib0,m1,m2,k1,k2,k0,m0 and Jb0,n1,n2,k1,k2,n0,k0 . Again,
the order of m1,m2 and n1, n2 are not fixed. The resulting memory layout for I can
be seen in Fig. 13a and for J in Fig. 13b, where column-major matrices are stored
along the K dimension first, then M dimensions, then batch dimensions.

Shape of matrix multiplications Choosing the dimensions that the GEMM
should be performed on is not a trivial task. As described earlier, the routine that
generates LIBXSMM matrix kernels is provided with matrix shapes that encode
the sizes of the matrices that are multiplied. Looping around GEMMs of different
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Figure 13: (a) Memory layout for a left input tensor. (b) Memory layout for a right
input tensor.

shapes results in varying performance. Fig. 14 shows the attained performance of
different kernel shapes on an Intel Xeon Platinum 8360Y processor. The sizes of the
matrices matter and so does the choice of dimensions the GEMM is performed on.
There are multiple ways to select dimensions. First, one could pick dimensions where
their sizes are close to a matrix shape that performs well. This, however, limits the
possible matrix shapes drastically. Another observation is that multiple dimensions
of the same type can be merged into a bigger dimension and one dimension can
be split up into multiple smaller dimensions. This rapidly increases the number of
possible matrix shapes. At the smallest level, one can divide a dimension d into
multiple dimensions d0, . . . , dn where |d0|, . . . , |dn| are the prime factors of |d|. The
shape of one matrix is now only limited by a product combination of all the prime
factors regarding one dimension type. The research of Springer and Bientinesi about
the GETT approach [26] essentially targets this problem by finding ways to reshape
the tensors to get new possible matrix shapes. However, it still does not guarantee
a well-shaped matrix. For example, in a tensor consisting of one M dimension m0

with |m0| being a large prime number, the M dimension can’t be split in any way.
One would be stuck with the given matrix shape with |m0| rows.

Counting up indices Until here, there only have been considerations about how
to permute dimensions of an intermediate tensor. While characteristics 1. - 3. can be
met with this approach, characteristic 4. is still dependent on the tensor provided.
Standard permutation ensures that tensors have strides for each dimension and
elements can be accessed using Eq. (2). This means that intermediate tensors
could be stored and used independently of the einsum they originate from. Since
intermediate tensors are generally not used outside the einsum, accessing elements
can be made more complicated in order to guarantee matrix multiplications of a
desired shape.

Let’s consider a binary contraction with three K dimensions k0, k1 and k2 with
dimension sizes |k0| = 2, |k1| = 2 and |k2| = 3. In addition, the kernel shape should
be kernelk = 4. To achieve this, it is easy to see that k0 and k1 can be merged to
K01 with |K01| = 4. k2 could then be used to loop around the GEMM. The looping
stride is equal to the stride of k2 in Ik2,K01 . In this case, it is |k0||k1| = 4 and is
equal to kernelk. The left side of the table in Fig. 15 shows what indices of the K

27



Figure 14: Kernel performance in GFLOPs for different matrix shapes using double
precision floating point numbers. m = n = 64 are constant and k varies from 2 to
128.

dimensions are part of what matrix in the K direction. There are a total of three
matrices divided by a horizontal line. By going down rows the indices are “counted
up” from right to left. By going down four elements, only k2 will be increased by
one while k0 and k1 remain constant. This is because |K01| = 4 divides the stride
4 for jumping a matrix. An algorithm that increases indices i0, . . . , in−1 by one is
shown in Alg. 1. “Counting up” refers to increasing indices multiple times.

Let’s now look at a different approach. As already stated, finding a dimension
combination so that a specific kernel size is accomplished is not always possible.
The search for a combination can have a large search space if tensors have lots of
dimensions or dimensions that have a long prime factorization. To work around this,
we can look at what happens if we take the order of the K dimensions as granted
and fetch kernelk elements for each matrix. For our example, the indices resulting
from this procedure are shown in the right column of the table in Fig. 15. Jumping
one matrix still results in a matrix stride of 4. This pattern still provides matrices
in a great memory layout. No exhaustive search of potential reshape operations is
needed. Also, any kernel shape can be chosen, since fetching kernelk elements is
always possible until there possibly needs to be a remainder kernel. However, the
relation between the respective indices of different matrices is complicated. Rows 1,
5 and 9 of the table in Fig. 15 show indices of the first elements in each of the three
matrices. By going from row 1 to 5 and 5 to 9, k2 gets increased by one in the left
column. There is no clear pattern for doing the same in the right column by going
from indices (0, 0, 0) to (0, 1, 1) to (1, 0, 2). First, k0 stays the same while k1 and k2
get increased by one. The second jump results in k0 and k2 being increased by one
while k1 gets decreased by one. This makes computing indices of dimensions harder
than before.

If we now introduce the same concept to the M dimensions, we get a tensor layout
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Figure 15: Indices part of three matrices being increased in different order.

similar to the one shown in Fig. 13a. However, the shape of matrices can be chosen
freely and characteristic 4. is finally met. Going one matrix further into the K
direction means getting kernelk new index tuples (k0, . . . , kn) by counting up from
the rightmost index tuple in the current matrix. I call this memory layout the fixed
block layout (FBL). The LAGEMM is now implementable by having four loops
(batch, M, N, K) around a GEMM of any desired shape defined by kernelm, kerneln
and kernelk. Assuming the kernel sizes divide the respective sizes |M |, |N | and |K|1,
the number of loop iterations will be kloop = |K|÷kernelk, mloop = |M |÷kernelm
and nloop = |N | ÷ kerneln. Note that the number of loop iterations bloop = |B| is
not divided by any kernel size, since batch dimensions are not part of the GEMM.

With intermediate tensors in FBL, a LIBXSMM kernel can now be used to efficiently
calculate a binary einsum contraction between them. The remaining problem is to
think of an unpacking routine that writes elements of kernel result matrices to the
correct position in the respective output tensor following the FBL.

5.2.2 Unpacking routine for the FBL

The goal of this section is to describe an unpacking routine that can write elements
of result matrices of a LIBXSMM kernel to their correct positions in memory. Con-
sidering that the result tensor is in FBL, this is more complicated than an unpacking
routine for the standard LAGEMM approach.

Let’s look at a contraction between the tensors A and B resulting in the intermediate
tensor I that is in FBL. The contraction between A and B is denoted as ab. Since I
is an intermediate tensor it will be contracted at a later stage with another tensor.
This tensor is named J and their contraction ij. For describing the unpacking

1This is still a restriction of the current implementation.
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Algorithm 1 increase indices

Input: indices i0, i1, . . . in−1, dimension sizes s0, . . . , sn−1
Output: increased dimensions i0, i1, . . . in−1

for j ← n− 1 to 0 do
ij ← ij + 1
if ij < sj then

break

end if
ij ← 0

end for
return i0, . . . , in−1

routine, A and B, as well as J don’t have to be in FBL, but they may be. For the
contraction ab, the usual types of dimensions exist, resulting in the sets of dimension
types Bab, Mab, Nab and Kab. The respective sets are present for the contraction
ij, namely Bij, Mij, Nij and Kij. If we assume that I is a left input tensor, then
Nij is of no importance going further. It is important to understand the connection
(or no connection) between the sets of each contraction. Any dimension appearing
in Kab will not be in any of the sets for ij. All the dimensions in Bab ∪Mab ∪ Nab

are also in Bij ∪Mij ∪Kij and with this present in I. Note that these are also the
only dimensions in I, so given their indices it should be possible to calculate the
respective offset in I. There are no further dependencies between the dimensions
of both contractions. A dimension d can be part of Bab and Mij, meaning d is a
batch dimension in ab, but an M dimension in ij. All the other combinations are
also possible. Fig. 16 shows an example contraction and the respective dimension
type sets. The sets have to be taken into consideration while calculating an offset
for an element that should be stored in I.

To do so, one needs to know where the elements of a result matrix M, coming out
of the LIBXSMM kernel, need to be unpacked to I. This boils down to two things:

1. Find out the dimension indices for every element in M.

2. Calculate the respective offset for the element in I.

Retrieving indices The matrixM holds indices for all dimensions being part of
Bab ∪Mab ∪ Nab since those are all the dimensions of I. Indices that are part of
Bab are batch dimensions and constant throughout all elements of M. Retrieving
them is simply done by knowing about the order in which the batch dimensions are
increased. So for every batch loop iteration, they get increased by one. To know
about the indices that are part of Mab or Nab, a starting point of indices, as well
as the order in which they are increased, are needed. A starting point refers to the
indices for the top left element ofM. M can now be traversed and indices increased
until the indices for every element are known. Alg. 2 shows how the indices of matrix
elements are retrieved.
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{c,j,b,g,h} {c,i,j}

{i,k,g,h}{i,g,h,b,c}

Mab = {b,g,h}

Nab = {i}

Bab = {c}

Kab = {j}

Mij = {b,c}

Nij = {k}

Bij = {i}

Kij = {g,h}

Figure 16: Sets of dimension types for contractions ab and ij.

Algorithm 2 retrieve indices

Input: kernelm, kernelk, start values startm0, startm1, . . . and startn0, startn1, . . .
Output: indices for each element
m0,m1, . . .← startm1, startm2, . . .
n0, n1, . . .← startn1, startn2, . . .
for i← 0 to kerneln − 1 do

m0,m1, . . .← startm1, startm2, . . .
for j ← 0 to kernelm − 1 do

//current indices can be retrieved here
increaseIndices(m0,m1, . . .)

end for
increaseIndices(n0, n1, . . .)

end for
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Calculating offsets Given an index for every dimension in Bab ∪Mab ∪ Nab =
Bij ∪Mij ∪Kij, the goal now is to calculate the corresponding offset in I. Normally,
one would multiply every index with the stride of the respective dimension in I.
Since I is in FBL, this is not possible for every dimension. First, let’s match the
dimensions in Bab ∪Mab ∪ Nab to one of the sets Bij,Mij or Kij they appear in.
Indices for dimensions in Bij can still be multiplied with their dimension strides in
I. This is possible since batch dimensions of I only loop around matrix slices that
are in FBL. All the slices are of the same size which provides a proper stride. This
gives the part of the offset that dimensions in Bij are responsible for. For dimension
in Mij or Kij, no such stride exists because of the FBL.

Let’s consider dimensions in Mij first. In I, for every new matrix in M direction, the
indices for dimensions in Mij will be increased kernelm times. The dimensions still
have an order in which they are increased. By knowing the indices of the dimensions,
one knows exactly how often the indices have been increased. Similar to strides, each
dimension has an increase-stride iStr. Assume that m0,m1, . . . ,m|Mij |−1 are counted
up from right to left, then their increase-stride is calculated by

iStr(mi) =

|Mij |−1∏
k=i+1

|mk|. (7)

The number of m-increases is then calculated with indices i0, . . . , i|Mij |−1 by using
the equation

m-increases =

|Mij |−1∑
k=0

ik · iStr(mi). (8)

The way these equations function can be described with number systems. The
indices regarding dimensions m0,m1, . . . ,m|Mij |−1 form a number N that is equal
to the m-increases. This number can be interpreted with a custom number system,
where each digit has its own maximum value. If all the dimension sizes were 10,
the m-increases are equal to N interpreted in the decimal system. The respective
iStr-values would then be . . . , 100, 10, 1, corresponding to how much the number
increases by increasing the respective digit by one.

With the number of m-increases, it is possible to find the index of the current
matrix in the M direction by calculating iMatm = bm-increases ÷ kernelmc. The
remainder rMatm = m-increases mod kernelm is the offset inside the current ma-
trix in the M direction. iMatm still needs to be multiplied with a stride of a matrix
jump in the M direction. This stride is possible to compute by knowing how many
matrices are stored along the K dimension since matrices are stored along the K
dimension first. The number of matrices along the K dimension is calculated by
nK = |K|÷kernelk = kloop. With nK, the part of the offset that dimensions in Mij

are responsible for is iMatm ·nK ·kernelm ·kernelk+rMatm, where kernelm ·kernelk
is the size of a matrix. nK · kernelm · kernelk = str(Matm) can be seen as a stride
for going one matrix into M direction. The partial offsets of dimensions in Kij can
be calculated similarly, as well as Nij if I would be a right input tensor. Respec-
tive numbers of increases would be calculated alongside matrix indices, remainders,
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matrix strides, and remainder strides. Adding all the partial offsets results in one
final offset of an element in I. An example calculation of an offset for one element
coming can be seen in Fig. 17. The figure also provides an overview of all needed
strides and indices.

Doing all the above calculations for every element is not practical and too com-
putationally expensive. The strides and increase-strides could be calculated once
and saved. The number of increases, indices of matrices, the remainders, and the
final product with respective strides still have to be computed. Doing so for every
element is still not acceptable.

Offset vectors To help with expensive offset calculation, I use vectors to store
values that are part of an offset for an element. A similar idea is used in [19] to assist
offset calculations for their scatter-matrix layout. Let’s look at a result matrix M
coming out of a LIBXSMM kernel. Using the notation of the previous paragraph,
this matrix is calculated at some point in the contraction ab. Again, the goal is
to retrieve an offset for each of the elements in M to be able to store them in the
intermediate tensor I, which is in FBL. M holds dimensions from Mab and Nab.
Dimensions in Mab are increased by going down the rows of the matrix. Dimensions
in Nab are increased by going columns to the right. The indices of dimensions in Bab

are constant for every element inM. The matrix can be seen as a two-dimensional
coordinate system. One axis is regarding the rows and the other axis is regarding
the columns. The objective is to find vectors for each axis that should encode parts
of the offset for an element in I. They can be calculated once at the beginning of
a binary contraction and reduce index calculation overhead during the unpacking
process drastically. There is no need to have extra vectors for each kernel result
matrix. Only each of the dimension sets Bab,Mab, Nab need one vector denoted as
vB, vM and vN . Every index i of the vector vM encodes indices for every dimension
of Mab, where the indices have been increased i times. The unpacking routine has
to know about the starting indices of the three vectors for a given result matrix.
By increasing indices of vM and vN in the order the matrix is traversed, respective
vector indices can be derived for every element.

A simple offset calculation routine would allow the entries of the three vectors to
be added to calculate the offset. This is not the case with offset calculation for
the FBL. To view the problem, recall how offsets of elements are calculated. Each
dimension of Mab can be part of Bij,Mij or Kij (if the result tensor of ab is a left
input tensor at a later stage). The same applies to dimensions in Nab and Bab.
Before an offset can be calculated, all dimensions are first assigned to the dimension
sets in which they appear in I. Those are the sets Bij,Mij, Nij and Kij. Only
after that, partial offsets are calculated for each of the sets and later added. The
problem is that the different vectors vB, vM , vN must be calculated independently of
one another. This means that entries in vM only know about dimensions in Mab and
their indices. The assignment of dimensions to the dimension sets of ij is incomplete
from the viewpoint of vM . By doing the offset calculation on this view, a problem
occurs. Let’s consider the partial offset gained from indices regarding dimensions in
Kij. The offset depends on the values iMatk and rMatk that denote the index of
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Figure 17: Calculation of the offset for an example element.
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the current matrix and the remainder index in the current matrix. The remainder
index is an issue. Normally, multiple remainders don’t exist. Their values would all
be part of the number of m-increases from which iMatm and rMatm are derived.
Now, each of the vectors vB, vM , vN will calculate an offset based on their view
of the dimension sets. This results in multiple remainder indices and a possibly
wrong offset calculation by simply adding the partial offsets. The reason is that it is
important to make a distinction between iMatm being increased by one and rMatm
being increased by kernelm. This is because the stride for increasing iMatm is not
equal to rMatm · kernelm.

Simply adding calculated offsets from vB, vM , vN does not work. However, there is
a way to work around this. Each vector entry has to hold multiple values2. First, it
has to hold the offset that can be calculated from the partial view the vector has.
This is the part of the offset that is independent of the remainders. It serves as a
summand to later calculate the final offset. I call this offset the applicable offset.
Secondly, the vector has to have the remainders stored for each of the partial offsets
resulting from the index sets Mij and Kij (or Nij for a right input tensor). Again,
dimensions in Bij don’t have a remainder since they serve as an outer loop around
matrix slices of a fixed size. With the remainders stored in vB, vM and vN , it is
now possible to calculate the offset for an element in I. To do so, one can add
respective remainders that reference the same dimension set, let’s say Kij, of the
three vectors. The gained value can then be used to calculate how much further
iMatk has to be increased and what the real remainder rMatk is. Now, both values
can be multiplied with matching strides. The result is the last summand needed to
finish the partial offset calculation of indices regarding dimensions in Kij. By doing
the same for the remainder regarding Mij, the final offset is calculated by adding all
summands. The whole process is shown in Fig. 18, where the offset of an element
in the result matrix is calculated using vM , vN , vB. The indices of the vectors are
dependent on respective start values. The index of vB is constant for the complete
result matrix.

5.3 Current implementation

Input tensors of the einsum expression There is still the problem that the
input tensors of the einsum expression are not in FBL, so the described LAGEMM
approach can’t be applied to them. The current solution is to simply change the
memory layout of all these tensors so that they are in FBL. Let’s assume we have i
input tensors for an einsum. There will be i− 1 binary contractions until the final
result tensor is calculated. This means that there will be i− 2 intermediate tensors
since the final output tensor is not one of them. The ratio of tensors that do not
need to be permuted to those that need to be permuted is i−2

2i−2 ≈
1
2
. It is possible to

contract tensors that are not in FBL using different techniques. This would result
in research like [26] or [19] that looks at traditional tensor contractions and their
high-performance implementations. It is not part of this thesis and my current
implementation. Nevertheless, there are einsum expressions with input tensors that

2This is a matrix, of course. However, I still call them offset vectors.
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Figure 18: Offset calculation using offset vectors.
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do not need to be permuted to be in FBL. They already are. The einsum km, nk ->

nm encodes a column-major matrix multiplication. Given that the dimensions behind
m,n, k are less or equal to kernelm, kerneln, kernelk, both tensors are in FBL, to
begin with. Some einsums that refer to operations on small tensors can be contracted
without any permutation. Additionally, the current implementation makes use of
the possibility to transpose matrices. The einsum abxy, xycd -> abcd could then
be contracted the same way as xyab, cdxy -> abcd without permuting the input
tensors. The unpacking routine can be redundant too if the result tensor has a
suitable memory layout. In those cases, the matrix multiplication kernel writes
its results to the tensor immediately, without a cached matrix that needs to be
unpacked.

Kernel shapes A desired kernel shape can be defined for each of the binary
contractions. The actual shape is then given by kernelm = min(desiredm, |M |),
kerneln = min(desiredn, |N |), kernelk = min(desiredk, |K|). If a desired dimension
is not chosen because it is too big, then there is spare kernel space. If desiredm = 64
but |M | = 16, then kernelm = 16 and kerneln or kernelm can be doubled twice.
The kernel shapes are allowed to get larger than the respective desired values if the
permutation of inputs can be skipped as a consequence. With this heuristic, kernel
performance is decreased a little to reduce the number of memory operations.

Parallelization The current implementation is multithreaded by using OpenMP
[3]. There are four loops around the GEMM kernel with the K-loop being the inner
one. Each of the B,M or N -loops can be parallelized because they have an impact
on the address where elements are written into the result tensor. Running one of
the three loops in parallel results in no write dependencies since all result elements
are unpacked to different memory locations. Because the three loop candidates
are neighboring, I use the statement #pragma omp parallel for collapse(3) to
parallelize all of them.

Supported einsum expressions The current implementation does not support
all possible einsum expressions yet. There are three major limitations. First, only
einsum expressions with multiple input tensors are supported. Since the calculation
backbone of my implementation is LIBXSMM, a library targeting matrix multipli-
cations, it is clear that operations on a single tensor are not computable this way.
Every other einsum that operates on multiple tensors can be interpreted as a prod-
uct between matrices or vectors and a LIBXSMM kernel can be applied. The second
limitation is that there is currently no support for summing dimensions. If there
is an input tensor of an einsum expression that has a dimension identifier which
does not appear in any other input tensor, nor the final output tensor, then this di-
mension can be summed. Summing the dimension is again an operation on a single
tensor which is not supported. One could not sum the dimension and consider it
as an extra loop, but then the contraction time would not be competitive anymore.
The number of arithmetic operations would be larger by a factor of the dimension
size of the dimension that could be summed. Currently, for every einsum expression,
one has to make sure that every dimension identifier appears in at least two tensors.
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The last (and most impactful) limitation is about the possible dimension sizes of
the input tensors. The matrices that the GEMM is performed on have a fixed size
given by a desired kernel shape. This kernel shape has to divide the respective
dimension sizes without any remainder. This means that |M | mod kernelm = 0,
|N | mod kerneln = 0 and |K| mod kernelk = 0 must hold. If this is not the case,
my implementation does not work yet. A workaround is to choose every dimension
size and desired kernel shape so that they are equal to a power of two. This ensures
that |M |, |N |, |K| are also powers of two. The kernel shapes then divide |M |, |N |, |K|
if they are smaller, or they are set to be equal to |M |, |N |, |K| if they are larger and
thus dividing them too.

There are multiple solutions to make it possible to input any dimension sizes. First,
one could search for a kernel shape that does divide respective sizes, but then the
characteristic that any desired kernel shape can be chosen does not exist anymore.
Another possible way is to zero pad the tensors so that the remainder kernel is
called on matrices where parts are set to zero. Then the unpacking routine has to
know that some elements of the kernel result matrix are not needed and don’t need
to be written to the result tensor. The approach that fits best to the aspect that
LIBXSMM is a library that compiles kernels just in time is to compile kernels that
operate on the remainder part. Assume that |M | = 130 and kernelm = 64, then
the kernel could be called two times into M direction until there is a remainder of
2. It is possible to generate a new kernel of a new shape where kernelm is two. The
complexity is that each of |M |, |N | and |K| are possibly not properly divided by
the desired kernel shape. This means that 23 = 8 kernels have to be generated, one
for each combination where kernelm, kerneln and kernelk have their normal size or
their remainder size. This adds additional overhead because more kernels have to be
compiled. It is not easy to write an unpacking routine that ensures that the output
tensor is in FBL while also considering multiple possible kernel shapes within one
binary contraction.

6 Results

Throughout this section, I will be comparing the attained GFLOPs numbers (billion
floating point operations per second) of my implementation to the einsum imple-
mentation of PyTorch [20]. More precisely, I will use the ATen C++ interface. ATen
serves as the backend of PyTorch, providing much of its core functionality. Going
forward, I will use the terms PyTorch and ATen synonymously. PyTorch’s einsum
implementation follows the TTGT approach. It permutes input tensors to two large
matrices that a batch matrix multiplication is then performed on. Doing so in bi-
nary fashion leaves a single result tensor at the end of the contraction. PyTorch’s
implementation of the einsum routine can be found under [23].

I ran performance tests for einsum expressions containing different numbers of input
tensors. The tensors are ranging from small to large, meaning their number of
elements varies. There are both tests for single and double-precision floating point
numbers. I will present results regarding the multithreaded variant. To analyze some
runtimes of my approach in more detail later in this section, I show measurements
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on a single core. The CPUs I used to run tests on were

• Intel Xeon Platinum 8360Y CPU @ 48 cores with 252GB RAM

• and Intel Core i5 13600K @ 14 cores (6 performance, 8 efficiency) with 32GB
RAM.

My implementation can analyze an einsum expression once and call it multiple times
on different input tensors. This analysis is not just a string analysis, it also con-
tains all the offset vector initializations and just-in-time compilations of the GEMM
kernels. In the following, I will analyze the einsum once for tests regarding my im-
plementation, and then call the calculation routine multiple times without the need
to examine the einsum string again. I will provide GFLOPs numbers regarding the
einsum routine for both including and excluding the analysis. PyTorch analyzes the
einsum expression every time the torch::einsum() function is called, resulting in
an overhead. This overhead is minuscule for einsums with lots of calculations to
be done. However, it can be a bottleneck of einsum expressions regarding small
input tensors, for example small matrix multiplications. Since my implementation
delivers a final output tensor that has unit stride, the measurements for PyTorch
will include the statement out tensor = torch::contiguous(out tensor) at the
end to ensure the same.

The desired kernel shapes have been chosen by using a grid search over the variables
kernelm, kerneln and kernelk. For example, the kernel shapes for the Xeon Platinum
processor are kernelm = kerneln = 32, kernelk = 128 for double-precision, and
kernelm = kerneln = 64, kernelk = 128 for single-precision. If there are not enough
elements in the tensor to use this kernel shape, then the shape of a respective binary
contraction gets smaller, as described in section 5.3.

To obtain the number of GFLOPs for both PyTorch and my implementation, I first
computed the einsum a few times on the same input data to warm up the caches.
Then, I measured the time of a single execution to approximate how often the einsum
implementations have to be executed so that they run for about five seconds. Note
that this repeat value possibly varies between PyTorch and my implementation. Last
but not least, I ran both implementations their respective number of repetitions,
timed them, and calculated the number of GFLOPs by using the average runtimes.

6.1 Ordinary einsum expressions

This section shows tests for ordinary einsum expressions. These expressions denote
basic linear algebra operations, like (batched) matrix multiplications, chain matrix
multiplications, or vector-matrix products. Where multiple input tensors appear,
they are contracted from left to right. This will be the case for all upcoming tests.
Some expressions only have two input tensors, meaning there will be no intermediate
tensors. For those einsums, the number of necessary memory permutation operations
for my implementation is comparable to that of PyTorch. Both inputs are permuted
first, then GEMMs can be performed. Depending on the memory layout of the final
output tensor, PyTorch possibly permutes it too, whereas my implementation writes
the elements to the correct position in memory during the unpacking step.
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For these simple einsum expressions that operate on small input tensors, it is ex-
pected that my implementation profits from not needing to analyze the einsum
multiple times. Additionally, it is possible to skip the permutation of the input
tensors, as well as the unpacking routine most of the time. The runtime is then
simply about calling the kernel and its calculation time, which is short given the
small matrix sizes. The results regarding the ordinary einsum expressions on small
tensors are shown in Fig. 19 for the Xeon (top) and i5 processor (bottom). All
the dimension sizes were set to 32, except for the two batch matrix multiplications,
where the dimensions sizes were chosen to be 16. Note that my implementation
does support different-sized dimensions too. The left figures show results for single-
precision numbers, the right side for double-precision numbers. Blue bars show the
GFLOPs attained by PyTorch, orange bars the GFLOPs of my implementation, and
in contrast to the green bars without the einsum analysis (including offset vector
initializations and kernel compilations). The percentage numbers on top of the or-
ange bars show the relative increase/decrease in performance compared to PyTorch.
This is of course an optimistic value since it excludes the analysis.

The expected outcome that my implementation profits from the small size of the
tensors can be seen in the results regarding the i5, but not necessarily on the Xeon.
On the i5, my implementation performs better in almost all cases, while on the Xeon
it performs worse in five of the eight single-precision tests. The reason for that is
not clear, since further runtime analysis shows that calculating the einsum km, nk

-> nm is indeed only about calling the kernel with some additional overhead coming
from boilerplate code. It is interesting to see that the implementations perform
differently relative to each other on both processors.

The relations between the runtimes of PyTorch and my implementation are similar
for using single or double-precision floating point numbers. All upcoming diagrams
will only be showing single-precision numbers. The results for running the same
ordinary tests for larger-sized tensors are shown in Fig. 20. Here, all the dimensions
are of size 2048, except dimensions of tensors in the batched multiplications, where
dimensions are of size 512. The einsum analysis step is of no importance since the
calculation and memory operations take most of the time. The attained GFLOPs
are larger than before because there is more data that matrix multiplication kernels
can be called on in parallel. Consecutive kernel calls can be executed without any
time between them. In comparison to the smaller tensors, PyTorch has better
results since the costs of permute operations are less decisive on larger tensors than
on smaller ones. The amount of necessary calculation grows faster with increasing
tensor sizes than the number of memory operations. After permutation, the used
batched matrix multiplication routine can show its full potential. The matrix-vector
multiplication of my implementation performs poor. Further runtime analysis has
shown that a large amount of time (over 90% of total runtime!) has been spent on
permuting the inputs. Permutation is more expensive for matrix-vector products
since the number of necessary FLOPs is less compared to a matrix multiplication
with comparable dimension sizes. It is not worth permuting input tensors to achieve
faster computation because there is not much calculation to be done.

It is noteworthy that my approach using LIBXSMM outperforms a normal PyTorch
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(a) Xeon single-precision (b) Xeon double-precision

(c) i5 13600k single-precision (d) i5 13600k double-precision

Figure 19: Results for einsums encoding simple linear algebra operations on small
tensors.
(0) km,nk->nm, (1) mk,kn->mn, (2) mkb,nbk->bmn, (3) mkb,nbk->bmn, (4) ab,ca,dc->db, (5) ba,ac,cd->bd, (6)
ba,bc,cd,ed,fe,fh->ah, (7) mk,k->m
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(a) Xeon single-precision (b) i5 16600k single-precision

Figure 20: Results for einsums encoding simple linear algebra operations on large
tensors.
(0) km,nk->nm, (1) mk,kn->mn, (2) mkb,nbk->bmn, (3) mkb,nbk->bmn, (4) ab,ca,dc->db, (5) ba,ac,cd->bd, (6)
ba,bc,cd,ed,fe,fh->ah, (7) mk,k->m

in a column-major GEMM with m = n = k = 2048 by a factor of 2 on the Xeon
processor. My routine is not optimized for large matrix multiplications, while the
PyTorch implementation uses batched matrix multiplication routines as its calcu-
lation backbone. PyTorch is, however, faster for calculating a row-major matrix.
This is because its implementation permutes the matrices to row-major matrices
first. By increasing the dimension sizes even further, the expected outcome appears:
PyTorch surpasses my implementation with dimension sizes m = n = k = 8192 for
the column-major matrix multiplication on the Xeon.

6.2 Tensor network contractions

The following einsum expressions encode tensor network contractions. Here, the
number of input tensors is larger than in the section before. There will be a con-
siderable amount of intermediate tensors. The results for small tensors with single-
precision data are shown in Fig. 21 (top), where all dimension sizes are set to 2. My
implementation on the i5 is faster than PyTorch in all test cases where the einsum
analysis is not measured and in most of them on the Xeon. Again, the analysis
takes a relatively large amount of time because there is not much calculation to be
done. Note that einsum (0) and (3), as well as (1) and (4) denote the same network
contraction. Only the orders of dimensions in the input tensors are different. It
can be seen that the permutations have almost no effect on performance. PyTorch
permutes the tensors in all cases. My implementation does so too for the input
tensors. After that, the contraction routines on differently permuted tensors are the
same. The overall achieved GFLOPs are rather poor for both my implementation
and PyTorch. Even if parallelization can’t be utilized efficiently on these small ten-
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sors, interpreting the numbers as single-core performances does not yield any better
outcome.

The results regarding the same contractions for larger tensors are shown in Fig. 21
(bottom). Here, the dimensions sizes are chosen to be 8 for the einsums (0), (2), (3)
and 4 for the einsums (1), (4). Note that this implies that the contraction of the
einsum still happens rather quickly, explaining the difference in obtained GFLOPs
between the measures with/without the einsum analysis. The analysis takes a con-
siderable amount of time compared to the complete contraction routine. The reason
why the dimension sizes are not chosen to be bigger is because some tensors that
appear during the contraction would get too large. This is especially the case for
einsums (1) and (4) because many dimensions of a binary contraction are kept in
the respective binary output tensors, thus reducing the dimension sizes is necessary.
The contractions are still far from being calculation bound but perform with higher
GFLOPs than their smaller counterparts.

6.3 General einsum expressions

The following results are about more general einsum expressions that don’t fall under
the category of tensor network contractions. There can be batch dimensions, and an
identifier can appear multiple times in the einsum expression. Summing dimensions
is not supported, as already stated. So every dimension identifier appears in at
least two tensor sub-strings. The results can be seen in Fig. 22 (top) for small input
tensors with dimension sizes of 2. My implementation is faster than PyTorch on both
processors for the small variants where the einsum analysis is not included in the
time measurements. The performances including the analysis are still comparable
to those of PyTorch, while sometimes being higher, and sometimes lower. Again,
just like with the network contractions on small input tensors, the overall numbers
of GFLOPs are very small. There is much room to improve.

Results for the same einsum expressions on larger input tensors are shown in Fig.
22 (bottom). The dimension sizes were chosen to be 8 for einsums (0) - (3) and 4 for
einsums (4), (5). The same pattern can be seen as before with network contractions,
the numbers of GFLOPs are larger. My implementation now performs a bit worse
than PyTorch on the i5, especially if the analysis is considered too.

6.4 Detailed runtime analysis

The upcoming results show an in-depth view of where time was spent during different
contractions. Multiple subroutines were inspected. The subroutines are:

• Kernel: The accumulative time the kernel has taken to calculate all matrix
multiplications.

• Permute inputs: The time taken to permute all input tensors so that they are
in FBL.

• Unpack calculate offset: The time needed to calculate the offsets for elements
in the result matrices. This means doing the computation with the index
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(a) Xeon small tensors (b) i5 13600k small tensors

(c) Xeon larger tensors (d) i5 13600k larger tensors

Figure 21: Results for einsums encoding tensor network contractions in single-
precision.
(0) abcd,befg,cdjl,fhij,gikl->aehk
(1) abrs,bct,cdefu,defgv,ghwx,hijk,ijlos,lmuv,mnprw,nqtx->akopq
(2) atuv,abuvL,bcwx,cdyzA,dewABC,efC,fgBD,ghD,hiE,ij,jtk,klxEFM,lmyGM,mouzN,ouHN,opG,pqI,qrJK,rs,sIK
->LFHJ

(3) cadb,fbge,cdlj,hifj,lkig->eakh
(4) sbra,ctb,ufedc,evdgf,xghw,hjki,olsji,lmvu,pmrwn,txqn->oakpq
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(a) Xeon small tensors (b) i5 13600k small tensors

(c) Xeon larger tensors (d) i5 13600k larger tensors

Figure 22: Results for more general einsum expressions in single-precision.
(0) aabcda,grwas,fdwsar,dgf->abgc
(1) abcef,ubhwic,fpewaib,begwi,beop->boauhg
(2) abczef,reabq,oza,abqsa,feabo->asrbc
(3) abxcd,befg,cdxjl,fhij,giklk->aexhk
(4) abrbs,bct,cdefu,deXfgv,ghwhx,hijk,ijlos,lmluv,mnpCrw,nXqCtx->akXopq
(5) atXuv,abuvL,bcwx,cdyXzA,dewABC,efXC,fgBD,ghXD,hiE,iXj,jtk,klxEFM,lmyGM,mouzN,ouHYN,oYpG,pqXYI,
qrJK,rYs,sIXK->LFYXHJ

45



Figure 23: Detailed runtime analysis for the einsum km,nk->nm with
dimension sizes = 2048.

vectors as described earlier.

• Unpack memory: The time taken to write the elements of the result matrices
coming from the kernel to their correct memory position in the result tensor.

Note that the einsum analysis subroutine is not included. The percentages of run-
times were collected by benchmarking my implementation using a single thread on
the Xeon processor. Fig. 23 shows percentages for a large column-major matrix
multiplication. As expected, the kernel needs the most time, followed by permuting
the inputs. The unpacking routine takes in total about half the time of the permu-
tation, because one large tensor has to be unpacked, but two have to be permuted.
One can see that the offset calculation during the unpacking routine takes more time
than the memory writing step. This is even more extreme in later tests, so offset
calculation using offset vectors still has room to improve.

The percentages of time spent on the different routines differ from einsum expression
to einsum expression. The only clear indicator is if tensors are large enough so that
the kernel takes the most amount of time. Fig. 24 shows four contractions that
were part of previous tests. On the top, the same tensor network contraction is
analyzed for differently sized input tensors, so all the dimensions are of size 2 (top
left) or 8 (top right). One can see that permuting the inputs takes the most amount
of time for contracting the network of small tensors. In contrast, the permutations
have almost no effect on the runtime of the contraction of the network consisting of
larger tensors. Here, the offset calculation during the unpacking routine takes the
most amount of time.

The analysis of a more general einsum contraction is shown on the bottom, also for
input tensors with dimension sizes of 2 (bottom left) and 8 (bottom right). The same
pattern regarding the time taken for permuting the inputs can be seen as before.
For the contraction of small tensors, permuting the inputs takes the most amount
of time. It is of no importance for the contraction of the larger tensors. Here, the
time taken by the unpacking routine is almost at 90% of the total contraction time.
Both the offset calculation and memory writes take a long time to execute. Memory
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(a) abcd,befg,cdjl,fhij,gikl->aehk
dimension sizes = 2

(b) abcd,befg,cdjl,fhij,gikl->aehk
dimension sizes = 8

(c) abczef,reabq,oza,abqsa,feabo
->asrbc

dimension sizes = 2

(d) abczef,reabq,oza,abqsa,feabo
->asrbc

dimension sizes = 8

Figure 24: Detailed runtime analyses for different einsum expressions.
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writes take over 50% of the total contraction time. The memory layouts of the
tensors are not easy to handle and neighboring elements of a result matrix have to
be written to memory locations that are distant from each other.

By looking at the four figures, no clear bottleneck can be found. Depending on the
einsum expression, each of the subroutines can take the longest. One noteworthy
thing is the time the step for calculating the offset takes. In all four tests it is larger
than 15%, in three cases it is larger than 33% and in one case it is more than 50%
of the total contraction time. It takes longer than the memory writing step in 3 of
the four tests. Further improvement of the offset calculation is necessary to improve
these runtimes. The current implementation using the offset vectors is not sufficient
and too much calculation needs to be done to find out the offset for a single element.

6.5 Discussion

The obtained performance numbers are comparable to those of PyTorch and are of
the same magnitude most of the time. The option to call the contraction routine on
an already analyzed einsum expression leads to increased performance for contrac-
tions operating on small tensors. In cases where an einsum expression needs to be
calculated multiple times on different input tensors, this effect can be exploited. By
including the analysis step into the timing of the contraction, the performance gets
worse. While it makes no difference for contractions that are computation bound,
it decreases the number of GFLOPs for contractions on small tensors. It is im-
portant to say that I did not try to optimize the analysis step. The generation of
the LIBXSMM kernels is not the bottleneck of the analysis. The computing of all
necessary strides and offsets is. However, performance numbers where the timing of
the analysis was included are generally still comparable to those of PyTorch. They
are sometimes better but worse most of the time.

The performance of my implementation in comparison to PyTorch does not follow
a clear pattern, being faster or slower for different einsum expressions. I know that
the presented results do not provide a clear conclusion on which implementation
is the better one. One is not able to see what type of einsums can be calculated
faster by which implementation. It strongly depends on the einsum that should
be calculated, and the dimension sizes of the input tensors. What can be said is
that using the FBL brings no guarantee for better performance. Finding a good
way to benchmark einsum implementations could be part of future work. The
overall attained GFLOPs are rather low for most of the calculations. As seen in the
benchmark for larger linear algebra operations, the hardware is capable of way more
operations per second than achieved by many of the contractions. However, this is
true for both my implementation and PyTorch’s. It would be interesting to see one
of the approaches presented in [19] or [26] in an einsum or tensor network setting
and compare them to my implementation. Unfortunately, I am not able to provide
a comparison at this point in time.

The unpacking routine of my implementation gained complexity to ensure that the
intermediate tensors are in FBL. There are the benefits described in earlier sections
on the one hand, on the other hand, the additional difficulty can be seen in the
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runtime measurements. The calculation of offsets takes a large amount of time. It
is crucial to further reduce the complexity of this step. Furthermore, writing result
elements back to memory can’t be done by using faster vector stores, because there
are possibly weird memory access patterns while writing elements of the kernel result
matrix to their memory positions in the output tensor. However, this drawback
would still appear if intermediate tensors were stored in a more natural memory
layout and permuted later, like TTGT does. The permutation results in suboptimal
access patterns too. One way to further improve the runtimes is to think of an
unpacking routine that does ensure intermediate tensors in FBL, while also being
more memory friendly. This could be done by unpacking elements of the kernel
output matrix in a different order than before.

7 Conclusion and future work

In this thesis, I implemented a library using LIBXSMM for calculating einsum ex-
pressions. It is currently possible to compute a fair amount of einsums under the
constraint that dimension sizes have to be a power of two. The implementation
builds on top of the described LAGEMM approach, trying to minimize expensive
memory operations by finding a good memory layout for intermediate tensors. Re-
sults show a mixed view of runtime performances. In comparison to PyTorch, my
implementation shows performance numbers in the same order of magnitude. The
largest gain in performance is the possibility to analyze einsum expressions once and
compute them multiple times afterward, without the need to analyze them again.
This means that the presented fixed block layout is not a guaranteed source of higher
performance. However, there is room to improve the more complicated unpacking
routine to make it more competitive.

In the future, a goal would be to widen the range of einsum expressions my im-
plementation can be used for. This means the possibility to use tensors where the
kernel shape does not divide given dimension sizes properly, and a remainder kernel
is needed. Another path of research is to further improve the current implementa-
tion. Calculating element offsets by using the presented offset vectors is not sufficient
and needs to be improved. Unpacking the elements of a kernel result matrix in a
different order could result in better memory access patterns in the result tensor to
further minder the time taken by the unpacking routine. It is possible to improve
the FBL by introducing cache blocking to it. Then, there would be more loops
around the GEMM kernel, ensuring that sub-matrices exploit the cache sizes of the
machine. Different intermediate tensor layouts have not been examined and could
be part of future research. Other layouts could be both more or less complicated to
achieve better performances.
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