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ABSTRACT

The popularity of Deep Learning applications has led to an increased demand for
model inference. In response, I accelerate inference using System-on-a-Chip devices
to reduce the cost, ensure privacy through locality, and reduce latency. Therefore,
I implemented a high-performance convolution for convolutional neural network in-
ference on the  CPU using the ResNet50 v1.5 model as an example. My custom
implementation is competitive, outperforming a mathematical equal ATen imple-
mentation on multiple  CPU cores with up to 1.85 faster execution on a fused con-
volution. Furthermore, I use the ExecuTorch platform to access different hardware
and implement an extensible Android app for real-time inference and benchmarking.
The Android app allows for inference on the Snapdragon 8 Gen 2 System-on-a-Chip,
which includes an Hexagon Tensor Processor for dedicated matrix-matrix multipli-
cations, among other accelerators. With ExecuTorch, the ResNet50 v1.5 model can
be lowered to the Hexagon Tensor Processor, enabling a 23.6 speedup over the Snap-
dragon 8 Gen 2  CPU .



KURZFASSUNG

Die Popularität von Deep Learning Anwendungen hat zu einer erhöhten Nachfrage
nach Modell-Inferenz geführt. Als Antwort darauf beschleunige ich die Inferenz
auf System-on-a-Chip Geräten, um die Kosten zu senken, die Privatsphäre durch
Lokalisierung zu gewährleisten und die Latenz zu reduzieren. Zu diesem Zweck,
habe ich eine leistungsfähige Faltung für Convolutional Neural Network Inferenz
auf der  CPU am Beispiel des ResNet50 v1.5 Modells implementierte. Meine eigene
Implementierung ist konkurrenzfähig und übertrifft die ATen-Implementierung auf
mehreren  CPU -Kernen mit einer bis zu 1,85-fach schnelleren Ausführung. Zusät-
zlich verwende ich die ExecuTorch Plattform für den Zugriff auf unterschiedliche
Hardware und implementiere eine erweiterbare Android App für Echtzeit-Inferenz
und Benchmarking. Die Android App ermöglicht, Inferenz auf dem Snapdragon 8
Gen 2 durchzuführen, der neben anderen Beschleunigern auch einen Hexagon Tensor
Processor für dedizierte Matrix-Matrix Multiplikationen enthält. Mit ExecuTorch
kann das ResNet50 v1.5 Modell auf den Hexagon Tensor Processor übertragen wer-
den, was zu einer 23,6-fachen Leistungssteigerung im Vergleich zur Snapdragon 8
Gen 2  CPU führt.
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1. INTRODUCTION

In the current decade, we are witnessing the rise of Machine Learning (  ML ) models
such as GPT-4o [ 40 ] or GitHub Copilot [  24 ]. As more people use  ML to support
their workflow, the computational resources needed to perform model inference in-
crease. The term inference describes running a  ML model to deduce a prediction
from arbitrary input and fixed model parameters. Currently, the inference process
for large models is mainly performed on servers [  60 ] provided by large technology
companies such as Microsoft and OpenAI and used by millions of people [  37 ]. This
results in significant costs for hosting these models, both in terms of hardware and
power, which generate significant expenses on the consumer and provider side [ 30 ],
[ 41 ].

System-on-a-Chip ( SoC ) devices present a cost-effective solution, as most of them
are equipped with a Neural Processing Unit (  NPU ) [ 47 ]. An  SoC , a computer chip
that integrates nearly every component onto a single chip, includes components such
as a  CPU , Graphic Processing Unit (  GPU ), memory interface, and input/output
interface [  59 ]. This integration significantly enhances power efficiency by reducing
physical spacing and embedding dedicated hardware accelerators [  13 ]. An  NPU 

accelerator uses special hard-wired arithmetic units that natively perform matrix-
matrix multiplication (  MatMul ). Thus, they can be utilized for fast and efficient
inference, as the computations required for  ML models can often be expressed as
 MatMul operations [  22 ], [  23 ].

 NPU -equipped  SoC s are often found in newer consumer hardware, allowing models
to run efficiently on the consumer device. Mobile devices, especially, are expected to
have additional embedded accelerators similar to a  NPU to keep power consumption
low for  ML applications. An example is the Apple iPad Pro with M4, which contains
an Apple Neural Engine [  27 ] and a scalable matrix extension for fast  MatMul [ 5 ],
[ 14 ]. Another example is the OnePlus 12R [  39 ] smartphone with the Snapdragon 8
Gen 2  SoC [ 47 ] with a Qualcomm Hexagon Tensor Processor, which we take a closer
look at in  Section 2.2  . The Qualcomm Hexagon Tensor Processor is further referred
to as Hexagon Tensor Processor ( HTP ).

The evolution of  ML on mobile devices is an ongoing development, with the first  ML 

model being used around 2012 to enhance touch input accuracy on mobile devices
by mapping the input to the intended touch location [ 58 ]. Subsequent  ML models
were introduced to support new features on mobile devices, such as facial recognition
for device login [  21 ] and threat detection for user security [  9 ]. Later, studies were
conducted on human activity recognition to enhance the overall user experience [ 10 ].
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Around 2012, the first frameworks for Deep Learning (  DL ) appeared, marking a
new era for  ML with frameworks like Theano [ 11 ] and Caffe [  29 ]. A few years later,
around 2017,  DL frameworks were also available for mobile devices [ 62 ]. Unlike
previous  ML models,  DL models can take raw, unprocessed data directly as input,
and only the model’s architecture is created by experts. For example, Convolutional
Neural Networks (  CNN s) consist of relatively simple layers using artificial neurons
and convolutions [  31 ]. These layers require less manual work and often achieve
better accuracy and better generalization to the task [ 16 ], [ 31 ].

In this thesis, I will focus on the inference of  DL models on  SoC s.  Section 2 provides
background about convolutions, the ResNet50 v1.5 model, and the Snapdragon 8
Gen 2, which are the essential parts of this thesis. In  Section 3  , I explain the methods
required to integrate high-performance inference based on a custom implementation
of the ResNet50 v1.5 model. Additionally, I compare my custom implementation
with an equal implementation through the ATen library. In  Section 4  , I discuss
ExecuTorch as an end-to-end solution to the task of executing inference on  SoC s. It
combines Ahead-of-Time (  AoT ) model preparation and execution to take advantage
of the different components of a  SoC [ 20 ]. Further, ExecuTorch tightly integrates
with the PyTorch framework, enabling the use of many existing  DL models. To
take full advantage of ExecuTorch, I implemented an extensible Android app for
vision inference with the ExecuTorch runtime covered in  Section 4.4  . The code for
the custom implementation, the ExecuTorch lowered ResNet50 v1.5 model, and the
Android app is available at  https://github.com/RivinHD/ImageInference .
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2. BACKGROUND

In this thesis, I use the ResNet50 v1.5 model as an example for  CNN to perform
inference on a mobile device. A  CNN classifies or detects objects inside an image.
Thus, it has multiple use cases on mobile devices, such as facial recognition. To port
the model to the device, I use ExecuTorch and build an Android app to perform
inference and benchmarks. Therefore, we first discuss how a ResNet50 v1.5 works
in  Section 2.1  and then look at the Snapdragon 8 Gen 2  SoC used on the mobile
device in  Section 2.2 .

2.1. ResNet50 v1.5

The ResNet50 model [  25 ] was another milestone in developing  CNN s. It combines
the achievements of the early published VGG nets [ 51 ] with residual functions. The
introduction of residual functions allowed the ResNet50 model to win first place in
the ILSVRC 2015 classification task [ 25 ]. The ResNet50 model was later improved
to ResNet50 v1.5 by NVIDIA [  38 ]. The improvement consists of moving the stride
of two in the 3 × 3 convolutions, whereas the original has the stride two in the first
1 × 1 convolution.

2.1.1. Convolution

A convolution is a mathematical operation that combines two functions into a new
function and is given by the expression:

(a ∗ b)(t) B
∫ ∞

−∞
a(τ)b(t − τ) dτ

Where a and b are the functions being combined. To use it on discrete data, we
need to rewrite it into a discrete expression, resulting in the following:

(a ∗ b)(n) =
∞∑

m=−∞
a(m)b(n − m)

The discrete function is then applied to an input image x and a filter f , which can
be seen as a small image, typically between sizes 1 × 1 and 7 × 7, holding trainable
weights of the  CNN . Thus, function a becomes image x, and function b becomes
filter f . Further, m expands into the two dimensions, R and S , and n expands to h
and w. We can then simplify the discrete function to

yh,w =

R/2∑
r=−R/2

S/2∑
s=−S/2

fr,s · xh+t,w+s,
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where y is the output image and h and w are the iterators for the height and width of
the selected pixel of the output image. R and S are the height and width dimensions
of the used filter. To generalize this expression to multiple input channel C and
output channel iterator k, we get

yk,h,w =

C∑
c=0

R/2∑
r=−R/2

S/2∑
s=−S/2

fk,c,r,s · xc,h+r,w+s,

where the input channel dimension is based on the input image, and the number
of applied filters defines the output channel dimension. Additionally, a stride ς can
be added to reduce the output image size so that the new height and width are
represented by h = hinput ÷ ς and w = winput ÷ ς. Thus, the input image xc,h+r,w+s

becomes xc,ς·h+r,ς·w+s, but the filter and output image remain unchanged.

2.1.2. Shortcut Connections

The use of shortcut connections comes from the theory behind residual functions,
which allowed the ResNet50 to increase its learning capabilities based on network
depth. Deep networks have the problem of experiencing higher training and testing
errors than those with fewer layers. This problem is known as the degradation prob-
lem. It arises from the difficulty of the deeper network to learn an identity mapping
that would allow it to achieve at least the same performance as a similar network
with fewer layers [  25 ]. Typically, a Neural Networks (  NN ) learns a hypothesis H(x)
through stacked layers based on an input x. This hypothesis also holds for a few
stacked layers, i.e., a subset of layers of the original  NN , where x is the input of the
first layer. The approach of residual functions is to learn F(x) = H(x)− x so that the
original functions become F(x) + x. The residual approach allows the  NN to learn
a zero mapping to overcome the degradation problem, i.e., the weights decrease to
zero, and the input is added separately. Thus, an approximation of identity map-
ping is built by the  NN , as described in [ 25 ]. The zero mapping approach leads
us to the implementation of shortcut connections, which do precisely the identity
mapping of the input.

We can distinguish between two types of shortcut connections: identity shortcuts
and projection shortcuts. The identity shortcut forwards the input to the output of
the stacked layers and adds the forwarded input element-wise to the output. The for-
warding is possible because the input’s dimensions match the output’s dimensions.
Therefore, we can write an identity projection as y = F(x,Wi) + x. Projection short-
cuts are needed when the input dimensions do not match the output dimensions.
A linear projection is then performed to expand or contract the input dimension as
needed. The projection is based on learnable weights Ws, resulting in the equation
y = F(x,Wi) +Wsx, as shown in [ 25 ]. In practice, the projection shortcut is based
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on a 1 × 1 convolution and a batch normalization. The 1 × 1 convolution is used
to reduce the height and width dimensions based on the stride and to expand the
channels based on the number of filters used. The 1 × 1 convolution can only be
used because the channel dimension increases, and the height and width dimensions
decrease, the more profound the layer is in the architecture.

2.1.3. Architecture

ResNet50 v1.5 [ 25 ], [  38 ] is a  CNN consisting mainly of concatenated bottleneck
blocks. Each bottleneck block consists of a 1 × 1 convolution, a 3 × 3 convolu-
tion, and a 1× 1 convolution with a shortcut from the input of the bottleneck block
to its output. A batch normalization and a Rectified Linear Unit (  ReLU ) activa-
tion function follow each convolution of the bottleneck block. A detailed bottleneck
block is shown in the legend of  Figure 2.1 .

global average pool

1000 output dim 
fully-connected
with softmax

1x1 Conv, 64
3x3 Conv, 64
1x1 Conv, 256

1x1 Conv, 64

Batch Norm

ReLU

3x3 Conv, 64

Batch Norm

ReLU

1x1 Conv, 256

Batch Norm

ReLU

+

Expands to

7x7 Conv, 64, /2

Filter Size Stride
Number of filters

Projection
Shortcuts

Identity
Shortcuts

Legend
Image (RGB)

7x7 Conv, 64, /2

3x3 max pool, /2

1x1 Conv, 128
3x3 Conv, 128, /2
1x1 Conv, 512

1x1 Conv, 64
3x3 Conv, 64
1x1 Conv, 256

1x1 Conv, 64
3x3 Conv, 64
1x1 Conv, 256

x2

1x1 Conv, 128
3x3 Conv, 128
1x1 Conv, 512

x3

1x1 Conv, 512
3x3 Conv, 512, /2
1x1 Conv, 2048

1x1 Conv, 256
3x3 Conv, 256, /2
1x1 Conv, 1024

1x1 Conv, 256
3x3 Conv, 256
1x1 Conv, 1024

x5

1x1 Conv, 512
3x3 Conv, 512
1x1 Conv, 2048

x2

Conv...Convolution

Figure 2.1. The complete architecture of the ResNet50 v1.5. A dotted box with a multipli-
cation number marks repetitions of a bottleneck block with the same shortcut
connection.

The model takes a 224 × 224-pixel image with three color channels as input. The
image size of 224 × 224 is achieved by scaling the image so that the shorter side is
256 pixels and then cropping it to 224 pixels on both sides. The image is further
normalized by subtracting the fixed mean of [0.485 0.456 0.406] and dividing the
pixel values by the fixed standard deviation of [0.229 0.224 0.225] [ 53 ].
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At the beginning of ResNet50 v1.5, a 7 × 7 convolution with stride two is applied,
which halves the size of the image to 112 × 112. Then, a 3 × 3 max pooling with
stride two is applied, again halving the size to 56 × 56. Both operations are shown
in the first two white blocks of  Figure 2.1  .

The resulting feature map is then passed to the four blocks consisting of multiple
bottleneck blocks, as described at the beginning of this  Section 2.1 and indicated by
the blue, green, red, and purple colored blocks in  Figure 2.1 . When a feature map
is passed to the second, third, and fourth layer blocks, the first 3 × 3 convolution
halves the size of the feature map by applying a stride of two. In addition, a
projection shortcut is used instead of the identity shortcut in each first bottleneck
block because the input channel dimension of this bottleneck block does not match
the output channel dimension. Therefore, the input channels must be expanded
to match the number of output channels. The expansion is done by applying a
1 × 1 convolution and another batch normalization. Now, we element-wise add the
expanded input to the output feature map. An identity shortcut is used for the rest
of the bottleneck blocks, which also adds the input of the bottleneck block element-
wise to the output. Note that the element-wise addition is performed before the last
 ReLU of the bottleneck is applied.

After passing through the four blocks, the final stage of the ResNet50 v1.5 model
consists of a global average pool and a fully connected layer with an output size of
1000, represented by the last two white blocks in  Figure 2.1 . The global average pool
maps the 7 × 7 large feature map to a single pixel, where we then pass the channels
as a vector of size 2048 to the fully connected layer. Finally, a softmax operation can
be applied to transform the output of the fully connected layers into probabilities,
i.e., values ranging from 0 to 1. From these 1000 values, each representing a different
class in the ImageNet dataset, the human-readable names are recovered and ranked
based on the higher value.

2.1.4. Theoretical Inputs

Theoretically, ResNet50 v1.5 could process an input image of any size since there is
no mathematical limit to input size for the convolution, max pooling, batch nor-
malization,  ReLU , and shortcut operations used. Independence from the image size
is ensured by the global average pool in the last step, where the image is scaled
down to 1 × 1 pixel, i.e., to a single value. Increasing the image size should be
done carefully, as larger images dramatically increase the computational time and
resources needed to perform inference.  Figure 2.2  shows two runtime benchmarks
of different image sizes where height and width are equal. I chose 224, 448, and 672
for the image sizes because they are multiples of the ResNet50 v1.5 input size. In
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(a) Benchmark on  CPU (i7-1360P).
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(b) Benchmark on  GPU (RTX 3070).

Figure 2.2. Benchmark of different input image sizes for the ResNet50 v1.5. Both image
dimensions, height and width, are equal. The sizes 224, 448, and 672 are
multiples of the input size, and 256, 512, and 720 are standard real-world
image sizes.

addition, I also evaluated the image sizes 256, 512, and 720 for reference to standard
real-world image sizes. As expected, the runtime in  Figure 2.2a  scales exponentially
with the image size. On the other hand, in  Figure 2.2b , the runtime scaling remains
the same up to an image size of 512. This behavior can be attributed to the large
number of cores a  GPU has compared to a  CPU . Therefore, a difference in scaling
is expected. Also, model results may change and likely become less accurate as the
image size deviates more from the expected 224 × 224 input size, as explained in
[ 35 ].

2.2. Snapdragon 8 Gen 2

This section provides an overview of the Snapdragon 8 Gen 2  SoC with a focus
on the Hexagon Tensor Processor, a component in the Snapdragon 8 Gen 2  SoC .
The Snapdragon 8 Gen 2  SoC comprises a Kryo  CPU , an Adreno 740  GPU , and a
Hexagon processor [  48 ]. The  CPU is based on the new Armv9-A architecture [ 8 ],
which is a 64-bit architecture also known as AArch64 [ 6 ].

The Kryo  CPU consists of four core types: one prime core, four performance cores,
and three efficiency cores [  48 ], [  54 ]. Based on the Cortex-X3, the prime core clocks
up to 3.19  GHz . Kryo holds four performance cores with up to 2.8  GHz , divided into
two Cortex-A715 and two Cortex-A710. Finally, the  CPU comprises three efficiency
cores based on the Cortex-A510, which reaches a clock speed of 2.0  GHz .

The Adreno  GPU supports the Vulkan 1.3  API , which can also be used for  ML 

purposes.
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Figure 2.3. Overview of the Hexagon processor with scalar, vector, and tensor coprocessor
from [  36 ]

Data type Composition
Int4 Int4 weights + Int8 activations
Int8 Int8 weights + Int8 activations
Int16 Int8 weights + Int16 activations
FP16 FP16 weights + FP16 activation

Table 2.1. Compositions of data types supported by the
Snapdragon 8 Gen 2  HTP [ 49 ].

The best efficiency is still achieved by the Hexagon processor, which has dedicated
hardware for matrix-matrix multiplication, see  Figure 2.3  . Unlike the Hexagon pro-
cessor of the Snapdragon 8 Gen 1, the  HTP of the Snapdragon 8 Gen 2 has a ded-
icated power delivery system that allows it to clock up to 576  MHz independently.
The processor has an in-order four-wide Very Long Instruction Word (  VLIW ) archi-
tecture, i.e., four instructions per 128-bit  VLIW , and integrates a scalar accelerator,
a Hexagon Vector eXtension ( HVX ), and a Hexagon Matrix eXtension ( HMX ) [ 17 ],
[ 48 ]. Each instruction packed into a  VLIW must be independent to avoid read-after-
write and write-after-write hazards. The  HTP is a coprocessor of the Hexagon pro-
cessor and contains specialized matrix multiplication instructions where the output
is element-wise added to an accumulator. It performs up to 16 thousand accumu-
lation operations per clock cycle using the 4-bit weights, resulting in a theoretical
throughput of 18.8  TOPS at 576  MHz [ 15 ], [  17 ]. In addition, the  HTP requires
quantization in Int4, Int8, Int16, or FP16 to run a  ML model [  49 ]. The presented
data types are aliases for a composition of data types depending on whether it is
attributed to the weight or the activation. The data type composition is shown in
 Table 2.1 .
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3. CUSTOM IMPLEMENTATION

This section presents my custom implementation of ResNet50 v1.5 and explains
the techniques used to gain performance. It also serves as a methodology for high-
performance inference, using ResNet50 v1.5 as an example. Further, we will compare
the PyTorch implementation with my own.

My custom implementation is linked to ExecuTorch through the custom operator
feature. For details on custom operators, see  Section 4.3  . The custom operator
simplifies the implementation’s use, as it can be accessed as a lowered model in my
application interface, see  Section 4.4  . This approach can also be used to integrate
existing high-performance implementations of other models into the ExecuTorch
runtime.

3.1. Techniques and Implementation

This section outlines the techniques I used to create my custom implementation of
ResNet50 v1.5. We discuss the implementation in detail and how I used OpenMP
to parallelize it across multiple cores.

3.1.1. Batch Normalization

Batch normalization is a technique that helps speed up training by reducing internal
covariance shift [  28 ]. It is calculated by y = x−E[x]√

Var[x]+ϵ
· γ + β, where x is the input,

γ is the scaling factor, β adds a shift, and ϵ is a constant for numerical stability.
The scaling factor γ and the shift β are parameters optimized during the model’s
training phase. Furthermore, Var[x] and E[x] are fixed values computed with the
training phase and do not change based on the inference input. Therefore, we
precompute the factor ρ = γ√

Var[x]+ϵ
since it is known before the input is applied,

resulting in y = (x − E[x]) · ρ + β. The pre-computation increases performance if
batch normalization is applied more than once since precalculated square root and
division save computational resources.
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3.1.2. Convolution

Implementing a convolution, explained in  Section 2.1.1  , can be done in several ways,
such as im2col [ 19 ] or Winograd [ 32 ]. A naive implementation loops over each
dimension and processes each kernel independently. This results in ignored spatial
locality of cache lines and thus duplicate data loads from main memory, leading to
poor performance. Therefore, I block the convolution to process it as  MatMul [ 22 ].
Note that zero padding is assumed for the convolutions since the dimension of the
output tensor is not reduced by the convolution operation.

Blocking of a convolution is achieved by rearranging the input channels and output
channels of the convolution into a blocked form. The blocking of the input is ob-
tained by rearranging the channel dimension C, the height H, and the width W like
so: C × H ×W = (BC · bC) × H ×W ⇒ BC × H ×W × bC with BC being the number of
blocks each containing bC elements. For the filters, we do similarly by rearranging
the input channel C, the output channel K, the filter height R and width S , from
K×C×R×S into BK ×BC ×R×S ×bc×bk, where BK and BC are the respective blocks

∗

∗

=

=

H

K

W

H

C

W

C

K

S

R

K

H

W

1 3 5 7 9 1113151719 2123252729 31
2 4 6 8 1012141618 20222426 3028 32

+0

+32K

R

S

C

1 5
9 13

3 7
1115

2 6 4 8
1014 1216

+16

+32

+48

+0

C

W

H

1 3 5 7 9 1113151719 2123252729 31
33353739 4143454749 5153555759 6163

2 4 6 8 1012141618 20222426 3028 32
34363840424446485052545658 6260 64

+64

+0

Figure 3.1. Conversion of a convolution into a blocking of a convolution, with blocking
along the input channels C and output channels K with block size two. Zero
padding is assumed for the shown convolution but is not visualized. The red
elements are the output of a single step with blocking of a convolution using
the yellow, green, magenta, and blue colored elements as inputs. The numbers
inside a block indicate the memory layout of a single block, and the number
with the plus at the top left of a block indicates the memory offset of this
block.
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with the elements bK and bC. Last, the memory layout of the output is defined by
the blocking BK × H ×W × bK resulting from K × H ×W = (BK · bK) × H ×W, with
BK being the number of blocks each containing bK elements. The rearrangement
into blocks is visualized in  Figure 3.1 , where the blue marked part is rearranged
into its blocks below. Note that the rearrangement also induces a reordering of the
data layout and the loop order for computation so that the highest dimension has
a stride of one and is the innermost loop. For example, the input image has the
strides H · W · bC for dimension BC, W · bC for dimension H, bC for dimension W,
and one for dimension bC. Another example is  Figure 3.1 , where the numbers inside
the second blocks indicate the memory layout of a single BK or BC block. If one
wants to retrieve the memory layout of the whole tensor, one needs to offset the
memory layout of each block based on the skipped blocks. In  Figure 3.1  , the offset
is indicated by the number with plus at the top left corner of a block.

The rearranged memory layout allows us to get fast access to the tensor when we
stay in the bounce of a single block because of spatial cache locality. Furthermore,
the block rearrangement allows us to perform a  MatMul with the input and filter,
resulting in a blocked output. The  MatMul consists of a Filter × Input = Output,
written as dimension we get (bk × bc)× (bc ×W) = (bk ×W). Note that all dimensions
are transposed in  MatMul compared to previously written data due to a row-major
data layout. The process is visualized in  Figure 3.1  by the colored elements, where
the matching colors are multiplied depending on the C and K channels and summed
to two red-marked output rows. When we finish iterating over the input channel
blocks Bc, a complete Bk blocked row, marked in red, is finished. Finally, we can
apply post-processing to this row before writing it back into memory.

I have divided the convolutions into three types:

1. A convolution that applies batch normalization and  ReLU as a post-processing
step.

2. A convolution that applies batch normalization,  ReLU , and identity shortcut
as a post-processing step.

3. A convolution that first processes the projection shortcut and applies it along
with batch normalization and  ReLU as a post-processing step.

The first convolution type can be easily implemented by iterating over BK, H,
BC, R, S in precisely that order and processing  MatMul s inside the loop. Again, the

 MatMul consists of the dimensions bK, bC, and W, so we do not iterate over these
dimensions as the  MatMul processes them. When the iteration over the dimensions
BC, R, and S are finished, we apply the post-processing steps of batch normalization
and  ReLU function. The immediate post-processing ensures minimal read and write
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operations since the output row is already cached due to the convolution. Note
that BC is processed before H, but logical H should be processed first as H has a
smaller stride than BC. This reordering is done because it allows holding the same
complete output rows during the BC, R, and S loops and immediately post-process.
In addition, processing BC before H has no significant impact if the W and bc are
large enough to fill a complete cache line.

The second convolution type performs the same operations, except an additional
identity mapping is applied. Therefore, when the iteration over BC, R, and S are
finished, we apply the batch norm to the output row, add the matching row of the
identity shortcut, and finally apply the  ReLU function.

The third convolution type is more complicated than the previous two because
it processes two convolutions in the same BK and H loop. The first convolution is
finished by iterating over BC, R, and S like before. Then, the second convolution
computes the projection shortcut by processing a 1× 1 convolution in an additional
loop over Bp

C, where Bp
C is the input channel dimension of the projection shortcut.

The additional 1×1 convolution is needed to get the same dimension as the output.
Now, we can apply the post-processing step. First, a batch norm is applied to the
output, and another is applied to the output of the projection convolution. Then,
both outputs are added together, and finally, the  ReLU is performed.

The implementation becomes more complicated because strides greater than one
are used by the ResNet50 v1.5. Therefore, we need to adjust the width and height
dimension of the output to W ′ = W/stride and H′ = H/stride, but make sure to
calculate the correct index of the input by multiplying the width and height iterator
by the stride. The  MatMul than becomes (bk × bc)× (bc ×W ′) = (bk ×W ′). Since the
 MatMul processes the width dimension, I set the leading dimension of the input to
W ′ · stride = W. The leading dimension allows us to skip a given amount of elements
in this dimension regardless of the given dimension size, so we skip W elements
while getting the output for W ′. The same method is also applied when the 1 × 1
convolution of the projection shortcut contains a stride greater than one.

The blocking is set to 32 for both the input and output channel dimensions, as I
use the small matrix-matrix multiplication interface of Libxsmm [  26 ]. This blocking
can be performed because the ResNet50 v1.5 model consists of channel dimensions
multiple of 32, with the lowest being 64. An exception is the first 7× 7 convolution,
where we have a blocking of the input channel of three because we process the input
image with the three color channels.
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To further improve the performance of  MatMul s, I use the code dispatch interface
of Libxsmm [ 26 ]. The code dispatch interface sets up a function for the operation
and then executes the function with data. The function is set up outside the loops
to gain the most performance, and the precalculated function is executed with data
inside the loops. To set up the function, the  MatMul shape is created based on the
output and input matrices, the leading dimension, and the data type. Then, the
function is Just In Time (  JIT )-compiled from Libxsmm based on the given shape.
Finally, the function is executed inside the loops by providing the correct filter,
input, and output blocks.

Multicore parallelization is achieved using OpenMP [  18 ]. A collapsed loop paral-
lelizes the two outer loops, BK and H. In addition, the post-processing step of
applying batch normalization, adding the shortcut, and computing the  ReLU func-
tion is further parallelized by Single Instruction Multiple Data (  SIMD ) conversion
of the innermost loop bK.

3.1.3. Max Pooling

Max pooling computes the maximum values of input patches, resulting in an output
consisting only of those maximum values. Often, a stride of two or more is used to
reduce the width and height of the input. In the ResNet50 v1.5 model, a 3 × 3 max
pooling with a stride of two is applied, halving the width and height dimensions of
the input.

The implementation of the max pooling can be done similarly to a convolution. The
filter weights are replaced by performing a maximum reduction of the inputs and
operating independently on the channel, i.e., the channel dimension remains the
same. We now follow the loop order BC, H, W, R, S , bC, where R and S are the
height and width of the max pool kernel. To do a max pool operation, we must first
set the output values to the numerically lowest value and then apply the maximum
reduction. Therefore, we iterate over BC, H, W, within which we set the numerical
minimum by iterating over bC and finally apply the maximum reduction by iterating
over R, S , and bC.

Again, OpenMP is used to parallelize across multiple cores. The outer loops, BC and
H, are parallelized by a collapsed loop and further parallelized by  SIMD -converting
the inner bC loops since the maximum operation is independent across channels.
Loop W is not parallelized because the stride is relatively small, and the values of
the next width element are already cached from the previous maximum reduction.
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3.1.4. Global Average Pooling

Global average pooling was first introduced by [  34 ] as an alternative to the fully
connected layer at the end of a  CNN . It is an operation that calculates the average
of each channel dimension, thus reducing a feature map from C×H×W to C×1×1. In
the ResNet50 v1.5, global average pooling is the penultimate last layer that converts
each channel into a single feature, resulting in a feature vector for the fully connected
layer. In addition, it keeps the output independent of the input, as explained in
 Section 2.1.3 .

The implementation is relatively simple, as we only need to sum up and average an
entire layer. Before iterating over the data, we compute the scale s = 1

H·W that will be
used to average the data. Then we iterate over BC, H, W, bC in precisely that order
and sum to the output with the formula yc += xc,h,w ·scale, where c, h, and w indicate
the iterator over the channel, height and width dimensions, respectively. The scale
is applied to each element separately, as it does not degrade the performance much
and allows for a better parallel implementation.

OpenMP is again used for parallelization. The two outer loops, BC and H, are
parallelized by a collapsed loop and an additional sum reduction along the output
channel dimension. Again,  SIMD conversion is used for the inner bc loop because
the sum reduction is channel-independent.

3.1.5. Fully Connected Layer

A fully connected layer is a fundamental building block of a  NN . It consists of input
nodes connected to every output node, resulting in the formula y = α(W × x + b),
where x ∈ Rn is the input and y ∈ Rm is the output. W ∈ Rm×n are the weights
representing the connections between the nodes, b ∈ Rm is the bias, and α is the
nonlinear activation function.

My implementation is kept simple because it requires significantly fewer flops than
the convolutions of ResNet50 v1.5. Therefore, I use the Fastor framework [  42 ] and
can write a simple matrix-vector multiplication and an addition to the bias, resulting
in b += W × x. The activation function is omitted, as we only needed a linear
transformation of the input.

To parallelize the implementation with OpenMP, I block along the columns, since
the matrices are in row-major format, and execute the blocking loop in parallel. In
my case, the columns are not divisible by the block size, so we need to process the
remainder that does not fit into the block.
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3.2. Performance

To gain more insight into how effective my implementation is compared to an existing
one, we compare it to ATen. ATen is a C++  API and PyTorch’s base tensor and
mathematical operations library [ 45 ].

We compare each operation listed in  Section 3.1  to a mathematically equivalent ATen
implementation. The benchmark performance results are presented in  Figure 3.2  .
The benchmark was run using the Google benchmark framework with a warmup
time of 10 seconds and 100 repetitions of the same benchmark on an Intel i7-1360P
 CPU . In addition, Intel P-State was set to performance mode on the  CPU , and the
single-threaded benchmark was fixed to the first core. The benchmarks are run with
a block size of 32, a height and width of 224, an input and output channel count of
64, and a kernel size of 3 × 3. The fully connected layer benchmark is an exception
to this setup, as it uses an input size of 2048 and an output size of 1000.

 Figure 3.2  shows the benchmark results using a single thread and all 16 hyperthreads.
Custom refers to my implementation, which was discussed in this section. The num-
ber above each box plot indicates the runtime compared to the custom implementa-
tion. “ConvBlock” refers to the operation chain of convolution, batch normalization,
and  ReLU function, representing the first convolution type in  Section 3.1.2  . The ex-
tension of the “ConvBlock” with “Identity” or “Projection” refers to the second and
third convolution type in  Section 3.1.2  . “Max Pool” refers to the implementation
discussed in  Section 3.1.3  , “Global Average Pool” explained in  Section 3.1.4  , and
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Figure 3.2. Performance comparison between my (Custom) and equivalent implementa-
tion using ATen on an i7-1360P  CPU . The number above each box plot
indicates the mean runtime compared to the custom implementation.
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finally, “Fully Connected” discussed in  Section 3.1.5 . Note that the rearrangement
of the batch normalization and filter data layout is also done in the benchmark, as
the custom ResNet50 v1.5 implementation also performs this.

 Figure 3.2a  shows that the custom implementation “ConvBlock” can compete with
an ATen “ConvBlock” implementation. My max pool operation is significantly faster
compared to ATen. The reason why ATen is significantly slower is unknown. The
custom global average pool implementation is slightly slower, and the simple imple-
mentation of the fully connected layer is significantly slower than ATen. The poor
performance of the fully connected layer matters little, as most flops depend on the
convolutions in the ResNet50 v1.5 model.

When switching to multiple cores in  Figure 3.2b  , my three “ConvBlock” operations
scale significantly better than ATen. The better scaling may be due to the rear-
ranged memory layout, resulting in a more efficient parallelization. ATen’s max
pooling operation scales slightly better on multiple cores but is still significantly
slower than my custom implementation. My global average pooling operation scales
slightly better on multiple cores, outperforming ATen. The custom fully connected
implementation is still significantly slower than ATen.

The results should allow us to achieve competitive speeds when applied to the
example model. The entire performance of ResNet50 v1.5 is further evaluated in
 Section 4.5 .
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4. EXECUTORCH

ExecuTorch 

1
 is an end-to-end solution that enables on-device inference of PyTorch

programs on mobile devices, including iOS, Android, augmented/virtual reality
wearables, and microcontrollers. To ensure efficient deployment, it meets three
essential requirements [ 20 ]:

Portability: Ensure compatibility with a wide range of devices, from high-end
mobile phones to microcontrollers and embedded systems.

Productivity: Use the same toolchain for everything: modeling, conversion, de-
bugging, and deployment.

Performance: Deliver a high-performance experience by leveraging  CPU s,  GPU s,
and  NPU s.

These ensure that challenges such as power requirements, weak or no Internet con-
nection, and real-time processing are addressed. Please note that ExecuTorch is still
in the alpha stage of development at the time of writing. Therefore, concepts and
performance may change in the future.

4.1. Concept

The concept of ExecuTorch is based on three steps: exporting, compiling, and exe-
cuting the model.

First, the model is captured as a graph, representing it as a series of operations such
as addition, multiplication, or convolution. Then, we can optionally quantize the
model to reduce its memory size and to get better performance, with some loss of
accuracy. Quantization enables the model to represent the weights and intermediate
tensors using smaller data types, allowing faster computation. Additionally, model
quantization can be a hard requirement for some accelerators, e.g., the  HTP requires
quantization to Int4, Int8, Int16, or FP16 to work.

1GitHub repository:  https://github.com/pytorch/executorch 
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Second, the graph is converted to the Core ATen dialect [ 43 ], which decomposes
thousands of operators into a few fundamental operators. The Core ATen dialect
makes implementing these operators easier and applies more fundamental trans-
formations to improve performance. Next, the graph of the Core ATen dialect is
lowered to an Edge dialect [  44 ] that contains the Core ATen operators and user-
defined custom operators. The Edge dialect has the constraint that everything is
represented as a tensor, e.g., scalars become rank zero tensors. In addition, we can
lower these graphs to a target-aware backend such as XNNPACK, Vulkan, or Qual-
comm AI Engine Direct, which further improves performance or enables the use of
specialized hardware such as the  HTP . Lowering to a backend is done by swapping
the graph with a semantically equivalent graph based on the provided operators of
the lowered backend. The lowering process involves partitioning a subgraph, which
then gets sent to the backend to be replaced by one or a series of specialized opera-
tions. Finally, the lowered graph is converted into an ExecuTorch program. At this
stage, we can add optional memory planning for the intermediate tensors to reduce
the number of allocations and deallocations. Memory planning is available because
it can be planned based on the static graph and is done by algorithms automatically.
However, it can be extended or overridden by custom memory plans.

Third, the compiled ExecuTorch program can now be loaded and executed by an
 AoT -compiled ExecuTorch shared kernel library that contains the ATen operators,
target-specific libraries, and custom operators. In Addition, ExecuTorch supports
selective build, a feature that allows one to choose only the necessary kernels the
program uses, thereby minimizing the binary file size [ 20 ].

In this thesis, I use the ResNet50 v1.5, explained in  Section 2.1 , as an example
model for image classification. Therefore, I lowered the model based on the explained
concepts and used several programs of the same model using the XNNPACK backend
and the Qualcomm AI Engine Direct backend. In addition, I use quantized and
initial models for each backend. Further, I use the default memory planning, which
greedy optimizes the intermediate tensors by reusing as many allocated tensors as
possible.

4.2. Backends

This thesis uses multiple backends to lower to the different hardware available on
the Snapdragon 8 Gen 2 chip. The XNNPACK backend is used for the  CPU , Vulkan
for the  GPU , and Qualcomm AI Engine Direct for the  HTP on the Qualcomm chip.
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4.2.1. XNNPACK

XNNPACK 

2
 is a highly optimized library for running  NN inference on  CPU s of

various architectures, such as Arm, x86, WebAssembly, and RISC-V. It is an open-
source project hosted by Google and is included by default as an ExecuTorch back-
end. Since I use a Snapdragon 8 Gen 2 with Armv9-A architecture on Android, it is
a good fit as all operations listed in  Section 3.1  needed to execute the ResNet50 v1.5
model are supported.

4.2.2. Vulkan

Vulkan [  52 ] is an open standard for graphics programming developed by the Khronos
Group. It is known as a successor to OpenGL by the community, allowing for
more performance through hardware-aware programming. Features such as manual
memory management and support for multiple processors allow for very effective
load balancing in exchange for high initialization overhead [  7 ], [  56 ]. As a graphics
language, it is designed for highly parallel efficient  GPU tasks and can compute
 ML workloads by splitting them into multiple parallel subtasks. The Adreno 740
 GPU supporting Vulkan 1.3 is a good fit for this backend as it supports the latest
standard and is already integrated into ExecuTorch.

4.2.3. Qualcomm AI Engine Direct

The Qualcomm AI Engine Direct is a Software Development Kit (  SDK ) that pro-
vides a low-level, unified  API for  ML development. It is designed to improve the
performance of  ML models on Qualcomm’s AI accelerators on the  CPU ,  GPU , and
 HTP . Qualcomm AI Engine Direct is designed as a hardware abstraction  API for
clean software separation to different hardware cores. The  SDK allows developers
to manage the trade-off between core-specific library capabilities and memory us-
age, ensuring minimal memory usage while delivering the highest performance [ 46 ].
With this backend, I can use the dedicated  NPU of the chip and get a significant
performance boost, which is discussed in  Section 4.5 . The  HTP is currently the only
component supported by this backend, but this is good enough for my purposes as
other backends like XNNPACK or Vulkan support the remaining hardware.

2GitHub repository:  https://github.com/google/XNNPACK 
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4.3. Custom Operator

Custom operators are operators defined by the user of the ExecuTorch platform as
needed and used to extend or overwrite parts of the ATen library. ExecuTorch pro-
vides two methods to register a custom operator in both the ExecuTorch runtime
and PyTorch. The first is based on macros provided by ExecuTorch and PyTorch.
It allows fast development since only a single file needs to be changed to adapt the
custom operator. However, it does not allow selective build as it is always regis-
tered in the ExecuTorch runtime. The second method is more complex, requiring
an additional registration file where the operator’s declaration is available. It has
the advantage of supporting selective build and a more centralized management of
custom operators. The declaration is then parsed, and additional code is generated
to obtain a registration library, which acts as an interface to the ExecuTorch plat-
form. The custom operator source code is then compiled into a kernel library and
linked to the registration library. Finally, the registration library can be linked to
the desired application or shared library, which executes the lowered models.

4.4. Android App

To run the lowered models on the Snapdragon 8 Gen 2  SoC , I implemented an
interface via an Android app that is extensible for other models to infer vision data.
The app includes key features, such as the ability to perform inference on real-time
input from the camera and inference from the storage of the used device through
images.

 Figure 4.1a shows the available Snapdragon 8 Gen 2  SoC models. The selection
menu adapts to the device by comparing the available hardware to the available
lowered models. So, a mobile device without the  HTP would only see the models
that can run on the  CPU .  Figure 4.1b shows the interface for photographing the
environment with the device camera. When a photo is taken, the resulting image is
automatically evaluated by the selected model, and the top five guesses are returned,
along with the model’s inference time. The details shown for the image can be
expanded to show additional data that other models might produce. The “Video
Camera” interface, selectable in the bottom navigation bar, is very similar to the
“Photo Camera” interface. It continuously takes photos of the environment and
processes them immediately, providing real-time feedback to the observation. The
details also show the possible frames per second that can be processed by the model,
which can help to evaluate if the selected model is a good fit for the current task.
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(a) Model Selection (b) Photo Camera (c) Image from Storage (d) Image Menu

Figure 4.1. The user interface for selecting and running a model on real-time input and
stored input.

The other interface shown in  Figure 4.1c loads images from the device’s storage
and evaluates them immediately after selection by the current model. It shows the
same details as the “Photo Camera” interface. The left and right arrows select the
previous or next image in the current collection. In addition, one can use the “Select
Image” button to choose a specific image from the collection. A collection contains
several images and can be used to perform benchmarks. With the menu shown in
 Figure 4.1d , one can add and remove images from the current collection or change
the collection. Furthermore, the option to create and remove a collection is provided
to categorize the images better.

The Android app also offers a benchmark suite for the models, located in the “Menu”
option of the bottom navigation bar. The benchmarks include a warm-up phase of
passing 25 images through the model. 25 has proven to be a good value for achieving
benchmarks without a high initial runtime.

 Figure 4.2a  shows the default setup the user will see when the benchmark suite
starts. First, one has to select a collection, which can be a predefined collection
with labels or a user-defined collection instanced in the image interface. Note that
only a collection with labels can show the model’s accuracy, as the actual label is
needed for the calculation. Next, a user can select a model on which to run the
benchmark. The results of multiple models are displayed based on the collection,
i.e., the model results are bound to the collection. In  Figure 4.2c  , a progress bar at
the top shows the number of images processed. In addition, the model results are
updated in real-time, helping the user to catch early errors. When the benchmark
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(a) Empty (b) Prepared (c) In Progress (d) Finished

Figure 4.2. The benchmark suite of my Android app to test performance across multiple
datasets and models.

is finished, shown in  Figure 4.2d  , the model results can be saved to local storage
or shared with other applications for transfer or post-processing. The model results
are saved in a JSON format as it is easy to process and human-readable.

4.5. Performance

This section compares the performance of the ResNet50 v1.5 model benchmarked
with my Android app, introduced in  Section 4.4 . First, we evaluate different hard-
ware and quantization schemes for the ResNet50 v1.5. Lastly, we analyze the effi-
ciency of the  HTP lowered model based on the theoretical peak performance. At
the time of writing, the Vulkan backend for the  GPU did not work. Therefore, it is
missing in the benchmark results.

4.5.1. Hardware & Quantization

The Android app contains a benchmark dataset of 5000 random images from the
ImageNet validation dataset. I used this to generate the benchmark results in
 Figure 4.3 . The blue dot shows the average runtime and the red bar shows the range
based on the minimum and maximum runtime collected during the benchmark. The
benchmark consists of the ResNet50 v1.5 model lowered to multiple quantization and
different backends, such as XNNPACK for  CPU and Qualcomm AI Engine Direct
for  HTP . I used Post Training Quantization (  PTQ ) for the quantized models shown
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Figure 4.3. The ResNet50 v1.5 model for the benchmark was lowered to different hardware
and data types and evaluated with 5000 random ImageNet validation samples.

 Figure 4.3a  shows the results on different devices and hardware.  Figure 4.3b  

shows the same results as  Figure 4.3a but visualizes only the  HTP models for
better clarity. The blue dot shows the average runtime and the red bar shows
the range based on the minimum and maximum runtime collected during the
benchmark.
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in  Figure 4.3 .  PTQ was trained with 1500 ImageNet validation samples, excluding
the samples used by the benchmark. The FP32 benchmark serves as a baseline for
accuracy as I only used a subset of the ImageNet validation dataset and did not
achieve the original 80.86 % accuracy achieved by the original ResNet50 v1.5 model
[ 53 ].

For the  CPU , I used FP32 to represent the standard version and Int8 for a quantized
version. Throughout the benchmark, we see that Int8 quantization halves or almost
halves the time needed to run the model while maintaining almost FP32 accuracy.
We also see that the accuracy is maintained across multiple devices, indicating that
XNNPACK is a portable library across different hardware.

The  HTP models gain significantly in performance as they run on special matrix-
matrix multiplication hardware. We see that the accuracy of the  HTP Int8 model
does not match the other  CPU Int8 models. The change in accuracy may be due to
numerical issues based on different orders of the underlying mathematical operations.
In  Figure 4.3b  , the Int8 model cuts the runtime in half compared to the Int16 model.
I also tried the Int4 quantization of the weights notated by Int16Int4 or Int8Int4,
where the first is the activation data type and the second is the weight data type. The
model runs “successfully” as it can be executed, but we see an accuracy of 0.2 %.
The extremely low accuracy could be attributed to the Int4 weights, which need
more precision to extract the correct class. Alternatively, the quantization process
through ExecuTorch’s Python interface may not work correctly, as PyTorch, which
ExecuTorch uses, does not natively support Int4 types. Another explanation could
be a problem in the AI Engine direct backend with Int4 weights or another issue
related to Int4 weights.

The SM8550 devices also show the performance of my custom implementation, which
runs on the  CPU . My custom implementation is about three times slower than the
 CPU model that used XNNPACK as backend. The significant performance differ-
ence could be attributed to the backend itself. For the convolutions, I use Libxsmm,
which does not natively support Android, unlike XNNPACK. Also, XNNPACK
might have a specific implementation for small convolutions, where I took a more
general approach for all convolutions. Additionally, ExecuTorch’s lowering process
could be the cause of ResNet50 v1.5’s performance improvement or other unknown
reasons.
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4.5.2. Theoretical HTP Performance

To better understand the implementation’s efficiency, we compare the ResNet50 v1.5
models achieved performance with an approximated peak performance on the  HTP .
Therefore, we first approximate the operation needed to classify an input on a
ResNet50 v1.5 model and then use the theoretical operations of 18.8  TOPS with
Int4 weights stated in  Section 2.2  . We will calculate the  TOPS for the Int8, and
Int16 model based on the size of the datatype i.e. TOPSIntX = 18.8 TOPS · 4 bits

X bits .

To approximate the number of operations required for a convolution, we use the
filter and output dimensions since each filter application results in a single output
pixel. We use the notation introduced in  Section 3 for the approximation formulas.
Thus, we derive opsConv = 2 · (R · S ·C) · (H′ ·W ′) · K. The part (R · S ·C) represents
the data on which the filter operates, and we perform two operations, multiplication
and addition, on each of the filter weights. Furthermore, the process results in a
(H′ · W ′) large output, which is repeated for each filter, i.e., the output dimension
K. The striding of the convolution is automatically included as we work on the
dimensions of the output.

Approximating the post-processing, i.e., applying batch normalization,  ReLU , and
identity shortcut, is relatively easy. Batch normalization has the formula y =

x−E[X]√
Var[x]+ϵ

·γ+β, so we count six operations, resulting in opsBatch = 6 · (H′ ·W ′ ·K). The
 ReLU function performs one operation, giving the formula opsReLU = (H′ · W ′ · K),
and an identity shortcut performs one addition operation, giving the same formula
opsId = (H′ ·W ′ · K). Note that a projection shortcut is represented by the combina-
tion: opsConv + opsBatch + opsId.

The max pooling can be described by a formula similar to that of the convolutions:
opsMaxPool = (C ·3 ·3) · (H′ ·W ′ ·C). Getting the maximum value is only one operation,
and the max pooling is fixed to a size of 3 × 3. In addition, the channel dimension
remains the same.

The global average pool is described by opsGAvgPool = (H ·W ·C)+C. The summation
of all elements is represented by (H ·W ·C), and the averaging is a single operation
on each channel.

Finally, the fully connected layer does opsFullyC = 2 · (H · W) operations since each
column of the weight matrix is used once for multiplication and addition.

We then use these formulas to construct the ResNet50 v1.5 model and sum up each
operation, resulting in 9 299 929 600 operations. For a more detailed explanation of
how the operations were calculated, see  Appendix A .
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The  TOPS of the ResNet50 v1.5 model are then calculated based on the benchmark.
The benchmark result for Int8 is 1 322 008 ns, and for Int16 is 2 525 768 ns. So
we calculate for Int8 9299929600·10−12

1322008·10−9 ≈ 7.0347 TOPS and for Int16 9299929600·10−12

2525768·10−9 ≈
3.6820 TOPS. Then we scale the theoretical peak performance to the correct data
type, resulting in 18.8 TOPS · 4 bits

8 bits = 9.4 TOPS for Int8 and 18.8 TOPS · 4 bits
16 bits =

4.7 TOPS for Int16. Further a comparison results in 7.0347 TOPS
9.4 TOPS ≈ 74.8 % for Int8

and 3.6820 TOPS
4.7 TOPS ≈ 78.3 % for Int16 of theoretical performance.

Achieving 74 % to 78 % of theoretical peak performance is a good result because
not every component of the ResNet50 v1.5 model can be described as a  MatMul 

and thus results in lower performance. For example, max pooling uses maximum
operation, and global average pooling uses summation reduction. In addition, batch
normalization may also degrade performance because it requires square roots and
divisions to be calculated. The  HTP lowered model achieves good performance, as
it is nearly impossible to achieve full theoretical performance. Note that we may
see improved performance as ExecuTorch development progresses, as it is still in the
alpha stage.
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5. RELATED WORK

Matrix-matrix multiplication works for most of the operations required to compute
a  CNN . In addition, using the  HTP allows us to gain a significant performance
boost, but it is limited to a matrix-matrix multiplication-like implementation and
similar operations. As more complex models emerge, such as the YOLOv10 [ 57 ],
only some parts of the model can benefit from the  HTP or similar coprocessors.

A solution to this problem is the Xilinx/AMD “Versal AI Engine”, which consists
of an array of up to 400 AI Engine tiles with manageable data paths, pictured in
 Figure 5.1 . The data paths ensure high flexibility for different tasks [ 4 ], [  33 ] since
the implementation also manages data streams between tiles. The flexibility allows
it to be more future-proof for newer, more complex models [ 1 ], as an adaption to
complex operations can be performed by data stream manipulation. In addition,
the complete Xilinx Versal  SoC also includes adaptive hardware with a high-speed
connection to the AI Engines through the integrated network-on-chip. The adaptive
hardware allows the  SoC to adapt to any scenario or computational logic a model
may require. Note that the Xilinx Versal  SoC is considerably larger in chip size
than the Snapdragon 8 Gen 2  SoC , as it is not designed for mobile applications.
Nevertheless, the architecture of AI Engines is used in the latest mainstream  SoC s,
known as AMD Ryzen AI [  3 ]. Ryzen AI includes a  NPU based on the AMD XDNA
architecture [ 2 ] derived from the Versal AIEngines architecture.
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Engine

M
em
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Engine
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em
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y

AI
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Flexible Interconnect
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Figure 5.1. AI Engine architecture with dedicated connectivity between tiles, each holding
its data memory [  4 ].
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Early exiting is a strategy that holds great promise in saving computational re-
sources and inference time. It was first introduced by Bolukbasi et al. [ 12 ], who
proposed two schemes. The first scheme introduces a policy between layers that de-
cides whether the model’s prediction is good enough to be returned as a reasonable
prediction. If not, the model proceeds to the next layer, checks the correspond-
ing policy, and repeats these steps until the end of the whole model. The second
proposed scheme was a network selection approach, which means that the mod-
els are sorted by complexity in an acyclic graph, starting with lower complexity.
Each model node is divided by a policy node that determines the confidence of the
parent model node and jumps to a more complex model to increase accuracy if
needed. Otherwise, the prediction is returned as is. A network selection of AlexNet
→ GoogleLeNet → ResNet50 achieved a speedup of 2.8 while maintaining the ac-
curacy of ResNet50 within 1 %. An overview of other early exit strategies is given
in [ 50 ].

An adaptation for early exiting on Large Language Model (  LLM ) has been pro-
posed by [ 55 ], as the task of natural language processing has become more popular.
A larger model generally correlates with improved performance, generality, and high
computational cost, which can only be covered by robust server infrastructure. Early
exiting significantly reduced computational resources, allowing the model to be pro-
cessed in a local environment, ensuring the privacy of the input and less cost for
server infrastructure in response to user demand.

Xin et al. [  61 ] have proposed another adaptation for early exiting the BERT model.
Through early exiting, the BERT model can save up to 40 % of the inference time.
This significant reduction in inference time enables real-time application and infer-
ence on edge devices like mobile phones.

Facebook (now Meta) has made great efforts to deploy Deep Neural Networks
( DNN s) on edge devices, mainly mobile phones [  60 ]. They provide a comprehensive
overview of the hardware used by billions of users and the techniques used to deploy
 ML models on these devices. The challenges of serving these many devices, such
as high variability in available performance, different coprocessors and accelerators,
model size, and connectivity to access model weights, require a versatile framework.
ExecuTorch addresses most of these issues through its adaptable lowering process
and multiple backends, as described in  Section 4 .
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6. CONCLUSION AND FUTURE WORK

With the rise of  DL applications, the demand for fast inference increases. In ad-
dition, the number of parameters a model uses increases to fit more general tasks.
A  SoC can satisfy these requirements, which often contain specialized hardware
to accelerate the computation of  MatMul s. In this thesis, we discussed a high-
performance implementation for a  CNN by a blocked implementation of the convo-
lutions, max pooling, and global average pooling. Furthermore, we looked at the
ExecuTorch platform, an end-to-end solution for running model inference on edge de-
vices, using multiple backends to target specific hardware on the  SoC . ResNet50 v1.5
was chosen as an example  DL model, and we discussed a comprehensive performance
overview by comparing my custom implementation to an existing one. In addition, I
evaluated different ExecuTorch backends on various devices and hardware and pre-
sented an extensible Android app for inference and benchmarking on mobile devices.

As demonstrated in the evaluation, my custom implementation of the ResNet50 v1.5
model can compete with existing implementations and achieve up to 1.85 times
faster performance with my multicore “ConvBlock” 

3
 implementation. Using the

Qualcomm AI Engine Direct backend of ExecuTorch, which enabled the use of the
 HTP , resulted in a significant speedup compared to the  CPU . The runtime of the
Int8 model on  HTP compared to the Int8 model on  CPU resulted in a speedup of
23.6, as the  HTP has dedicated hardware for Matrix-Matrix multiplication. There-
fore, dedicated hardware similar to the  HTP should be used to achieve the best
efficiency.

Future work could include early exiting, as described in  Section 5 , to further re-
duce inference time and memory usage. The use of early exiting could result in a
significant reduction in on-device inference time while maintaining the same perfor-
mance. Furthermore, one could take advantage of more features of the ExecuTorch
platform. For example, one could write a custom backend for specific hardware to
enable model inference on additional hardware. Also, one could explore the selec-
tive build feature and how to automatically select the correct operations required
by different models, leading to reduced binary file size.

3“ConvBlock” combines the convolution, batch normalization, and  ReLU operation.
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APPENDIX A

RESNET50 V1.5 - NUMBER OF OPERATIONS

This section shows the complete calculation of the theoretical performance of the
ResNet50 v1.5 model. We use the basic formulas derived in  Section 4.5.2 :

Convolution: opsConv = 2 · (R · S ·C) · (H′ ·W ′) · K
Batch Normalization: opsBatch = 6 · (H′ ·W ′ · K)

 ReLU : opsReLU = (H′ ·W ′ · K)

Identity Shortcut: opsId = (H′ ·W ′ · K)

Projection Shortcut: opsConv + opsBatch + opsId

Max Pool: opsMaxPool = (3 · 3) · (H′ ·W ′ ·C)

Global Average Pool: opsGAvgPool = (H ·W ·C) +C

Fully Connected Layer: opsFullyC = 2 · (H ·W)

We combine these to represent a bottleneck block with an identity or projection
shortcut. The width, height, and input channel dimensions are retrieved based on
the previous addition in the sum. For the identity shortcut, we get the following:

opsK
BlockId = ops1×1,K

Conv + opsK
Batch + opsK

ReLU

+ ops3×3,K
Conv + opsK

Batch + opsK
ReLU

+ ops1×1,4·K
Conv + ops4·K

Batch + ops4·K
ReLU

+ ops4·K
Id

For the projection shortcut, we get the following:

opsK,stride
BlockPj = ops1×1,K

Conv + opsK
Batch + opsK

ReLU

+ ops3×3,K
Conv + opsK

Batch + opsK
ReLU

+ ops1×1,4·K,stride
Conv + ops4·K

Batch + ops4·K
ReLU

+ ops1×1,4·K
Conv0 + ops4·K

Batch + ops4·K
Id

Note that ops1×1,4·K
Conv0 is named with Conv0, so the height, width, and input channel

dimension refer to the input of the first convolution in the summation.

Applying these formulas to the complete ResNet50 v1.5 architecture with input di-
mensions of 3× 224× 224, as discussed in  Section 2.1 , yields the following overview.
The↣ indicates the calculated number of operations used by this specific operation.
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ops = ops7×7,64,stride=2
Conv ↣ 236027904

+ ops64
Batch ↣ 4816896

+ ops64
ReLU ↣ 802816

+ opsMaxPool ↣ 115605504

+ ops64,stride=1
BlockPj ↣ 784752640

+ ops64
BlockId ↣ 445964288

+ ops64
BlockId ↣ 445964288

+ ops128,stride=2
BlockPj ↣ 959666176

+ ops128
BlockId ↣ 441348096

+ ops128
BlockId ↣ 441348096

+ ops128
BlockId ↣ 441348096

+ ops256,stride=2
BlockPj ↣ 955100160

+ ops256
BlockId ↣ 439040000

+ ops256
BlockId ↣ 439040000

+ ops256
BlockId ↣ 439040000

+ ops256
BlockId ↣ 439040000

+ ops256
BlockId ↣ 439040000

+ ops512,stride=2
BlockPj ↣ 952817152

+ ops512
BlockId ↣ 437885952

+ ops512
BlockId ↣ 437885952

+ opsGAvgPool ↣ 102400

+ opsFullyC ↣ 4096000

= 9299929600
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